python高性能
性能对比 pypy vs python
python • 李魔佛 发表了文章 • 0 个评论 • 5006 次浏览 • 2019-09-06 17:04
性能对比 pypy vs python
不试不知道,一试吓一跳。
如果是CPU密集型的程序,pypy3的执行速度比python要快上一百倍。
talk is cheap, show me the code!
代码很简单,运行加法运算:
执行2千万次
import time
LOOP = 2*10**8
def add(x,y):
return x+y
def cpu_pressure(loop):
for i in range(loop):
result = add(i,i+1)
if __name__ == '__main__':
start = time.time()
cpu_pressure(LOOP)
print(f'time used {time.time()-start}s')
python执行:
python main.py
返回用时:time used 21.422261476516724s
pypy执行:
pypy main.py
返回用时:time used 0.1925642490386963s
差距真的很大。 查看全部
不试不知道,一试吓一跳。
如果是CPU密集型的程序,pypy3的执行速度比python要快上一百倍。
talk is cheap, show me the code!
代码很简单,运行加法运算:
执行2千万次
import time
LOOP = 2*10**8
def add(x,y):
return x+y
def cpu_pressure(loop):
for i in range(loop):
result = add(i,i+1)
if __name__ == '__main__':
start = time.time()
cpu_pressure(LOOP)
print(f'time used {time.time()-start}s')
python执行:
python main.py
返回用时:time used 21.422261476516724s
pypy执行:
pypy main.py
返回用时:time used 0.1925642490386963s
差距真的很大。 查看全部
性能对比 pypy vs python
不试不知道,一试吓一跳。
如果是CPU密集型的程序,pypy3的执行速度比python要快上一百倍。
talk is cheap, show me the code!
代码很简单,运行加法运算:
执行2千万次
python执行:
python main.py
返回用时:time used 21.422261476516724s
pypy执行:
pypy main.py
返回用时:time used 0.1925642490386963s
差距真的很大。
不试不知道,一试吓一跳。
如果是CPU密集型的程序,pypy3的执行速度比python要快上一百倍。
talk is cheap, show me the code!
代码很简单,运行加法运算:
执行2千万次
import time
LOOP = 2*10**8
def add(x,y):
return x+y
def cpu_pressure(loop):
for i in range(loop):
result = add(i,i+1)
if __name__ == '__main__':
start = time.time()
cpu_pressure(LOOP)
print(f'time used {time.time()-start}s')
python执行:
python main.py
返回用时:time used 21.422261476516724s
pypy执行:
pypy main.py
返回用时:time used 0.1925642490386963s
差距真的很大。
性能对比 pypy vs python
python • 李魔佛 发表了文章 • 0 个评论 • 5006 次浏览 • 2019-09-06 17:04
性能对比 pypy vs python
不试不知道,一试吓一跳。
如果是CPU密集型的程序,pypy3的执行速度比python要快上一百倍。
talk is cheap, show me the code!
代码很简单,运行加法运算:
执行2千万次
import time
LOOP = 2*10**8
def add(x,y):
return x+y
def cpu_pressure(loop):
for i in range(loop):
result = add(i,i+1)
if __name__ == '__main__':
start = time.time()
cpu_pressure(LOOP)
print(f'time used {time.time()-start}s')
python执行:
python main.py
返回用时:time used 21.422261476516724s
pypy执行:
pypy main.py
返回用时:time used 0.1925642490386963s
差距真的很大。 查看全部
不试不知道,一试吓一跳。
如果是CPU密集型的程序,pypy3的执行速度比python要快上一百倍。
talk is cheap, show me the code!
代码很简单,运行加法运算:
执行2千万次
import time
LOOP = 2*10**8
def add(x,y):
return x+y
def cpu_pressure(loop):
for i in range(loop):
result = add(i,i+1)
if __name__ == '__main__':
start = time.time()
cpu_pressure(LOOP)
print(f'time used {time.time()-start}s')
python执行:
python main.py
返回用时:time used 21.422261476516724s
pypy执行:
pypy main.py
返回用时:time used 0.1925642490386963s
差距真的很大。 查看全部
性能对比 pypy vs python
不试不知道,一试吓一跳。
如果是CPU密集型的程序,pypy3的执行速度比python要快上一百倍。
talk is cheap, show me the code!
代码很简单,运行加法运算:
执行2千万次
python执行:
python main.py
返回用时:time used 21.422261476516724s
pypy执行:
pypy main.py
返回用时:time used 0.1925642490386963s
差距真的很大。
不试不知道,一试吓一跳。
如果是CPU密集型的程序,pypy3的执行速度比python要快上一百倍。
talk is cheap, show me the code!
代码很简单,运行加法运算:
执行2千万次
import time
LOOP = 2*10**8
def add(x,y):
return x+y
def cpu_pressure(loop):
for i in range(loop):
result = add(i,i+1)
if __name__ == '__main__':
start = time.time()
cpu_pressure(LOOP)
print(f'time used {time.time()-start}s')
python执行:
python main.py
返回用时:time used 21.422261476516724s
pypy执行:
pypy main.py
返回用时:time used 0.1925642490386963s
差距真的很大。