发现numpy一个很坑的问题,要一定级别的高手才能发现问题

一个二元一次方程:
y=X0**2+X1**2   # **2 是平方
def function_2(x):
return x[0]**2+x[1]**2

 
下面是计算y的偏导数,分布计算X0和X1的偏导
def numerical_gradient(f,x):
grad = np.zeros_like(x)
h=1e-4
for idx in range(x.size):
temp_v = x[idx]
x[idx]=temp_v+h
f1=f(x)
print(x,f1)
x[idx]=temp_v-h
f2=f(x)
print(x,f2)
ret = (f1-f2)/(2*h)
print(ret)
x[idx]=temp_v
grad[idx]=ret

return grad

然后调用
numerical_gradient(function_2,np.array([3,4]))

计算的是二元一次方程 y=X0**2+X1**2  在点(3,4)的偏导的值
得到的是什么结果?
为什么会得到这样的结果? 
小白一般要花点时间才能找到原因。
 

0 个评论

要回复文章请先登录注册