python 求2个list列表的相关系数
相关系数的一些介绍:相关系数用来表示两个数据是否具有相关性,比如人每天吃饭的饭量和他的体重具有正相关系,也就是吃的饭量越多,体重会越重。 当然也会有例外,所以这个相关系数不会为1. 如果为1就是说明完全的正相关。
比如 c=[2,4,6,8,10,12,14,16,18] ,和d=[4,8,12,20,24,28,32,36], 这两组数据,相关系数为1,因为二者的数据都在同一条直线上。 存在必然的因果关系。
其计算公式为:
实际上python的中pandas已经提供了很简单的内置函数,可以自己计算这个相关系数。 在《python数据分析》这本书就有,不过网上查到的资料就比较少。
参考代码:
上面的例子中,计算出的corr的值为1,如果修改一下d的某个值,比如 d[0]=3 把d的第一个值改为3,那么相关系数就不为1,但是他的相关系数为0.987503379952, 也差不多接近1. 说明这两组数据也是相关性很大的。
原创地址:http://www.30daydo.com/article/178
欢迎转载,请注明出处。
比如 c=[2,4,6,8,10,12,14,16,18] ,和d=[4,8,12,20,24,28,32,36], 这两组数据,相关系数为1,因为二者的数据都在同一条直线上。 存在必然的因果关系。
其计算公式为:
实际上python的中pandas已经提供了很简单的内置函数,可以自己计算这个相关系数。 在《python数据分析》这本书就有,不过网上查到的资料就比较少。
参考代码:
c=[2,4,6,8,10,12,14,16,18]corr()就是计算相关系数的函数。
d= [i*2 for i in c]
print d
s1=Series(c) #转为series类型
s2=Series(d)
corr=s1.corr(s2) #计算相关系数
print corr
上面的例子中,计算出的corr的值为1,如果修改一下d的某个值,比如 d[0]=3 把d的第一个值改为3,那么相关系数就不为1,但是他的相关系数为0.987503379952, 也差不多接近1. 说明这两组数据也是相关性很大的。
c=[2,4,6,8,10,12,14,16,18]
d= [i*2 for i in c]
print d
d[0]=3 # 修改d[0]的值
s1=Series(c) #转为series类型
s2=Series(d)
corr=s1.corr(s2) #计算相关系数
print corr
原创地址:http://www.30daydo.com/article/178
欢迎转载,请注明出处。