优矿回测可转债 代码 教程
不少投资者在投资的过程中,都想要回测自己的策略或者验证自己的想法. 不少读者也在后台留言,能否写写入门类的教程.
可是碍于非科班出生, 对于编程的一窍不通, 所以大部分止步于简单的数据统计.
比如采用excel对采集来的数据,手工测试与验证, 高级点的可以应用一些excel函数进行简单回测.
这里会有一个烦人且第一大障碍, 就是需要有采集来的数据. 首先保证这个数据的完整性与准确性. 这一步其实已经过滤掉想要回测的80%的人了. 具体优矿支持的数据。
优矿支持的数据
特色数据
其实其他的聚框,米宽,箩筐等等,都是大同小异的,本文只是挑选笔者使用比较多的优矿来介绍. 不过现在优矿并不支持实盘.
本文只是做一个量化平台框架的基本介绍, 后续的文章会有进阶, 加入买卖操作, 计算最大回撤, 以及更为复杂的多因子回测. 只要有的数据,基本都可以拿来加入到你的模型之中.
##################################################################
因为优矿本身并不支持可转债的交易,所以系统内置的order,buy,sell函数是无法应用到可转债上面。
不过只要能够获取到每日的行情数据,那么我们就可以自己构造一个交易系统。
核心就就是每次保存你的持仓信息,等到下一次调仓时,对持仓进行比较,对于调出的转债进行移除,新加的转债进行加入。 然后统计一下当前市值,记录下来,就可以得到收益率曲线。
部分代码如下:
[i]欢迎讨论探索,星球里面有更多的完整策略与代码,回测数据,结论资源。
[/i]
可是碍于非科班出生, 对于编程的一窍不通, 所以大部分止步于简单的数据统计.
比如采用excel对采集来的数据,手工测试与验证, 高级点的可以应用一些excel函数进行简单回测.
这里会有一个烦人且第一大障碍, 就是需要有采集来的数据. 首先保证这个数据的完整性与准确性. 这一步其实已经过滤掉想要回测的80%的人了. 具体优矿支持的数据。
优矿支持的数据
- 股票:沪深交易所股票的基本信息以及日/分钟级别的股票行情。
- 财务报表:沪深港上市公司披露的2007年会计准则变更以来的所有财务报表数据,包含三大报表和财报附注等细节。
- 公司行为:沪深上市公司业绩预告,业绩快报,IPO,配股,分红,拆股,股改等信息。
- 基金:场内外各类基金的基本信息,日/分钟级别的场内基金行情,日级别的场外基金净值,以及基金资产配置,收益情况,净值调整等信息。
- 期货:国内四大期货交易所期货合约的基本信息,日/分钟的期货行情,以及国债期货的转换因子等信息。
- 指数:国内外指数基本信息,日/分钟级别的指数行情,以及指数成分构成情况,指数成分股权重情况等信息。
- 港股:香港交易所股票基本信息以及日级别的股票行情。
- 大宗商品:国内各个品种(包括期货合约可交割品种)的大宗商品现货价格行情,以及产销量,库存等信息。
- 债券:债券/回购基本信息,日级别的债券/回购行情,以及发行上市,付息,利率,评级和评级变动,债券发行人评级及变动,担保人评级及变动等信息。
- 期权:上交所期权合约的基本信息,日/分钟级别的期权行情,以及每日盘前静态数据等信息。
- 宏观产业:中国及全球各国宏观指标,行业经济指标等数据。
特色数据
- 股票/指数等品种的量化因子库
- 雪球、股吧等社交媒体数据
- 主流媒体新闻文本和结构化数据
- 主流渠道公告文本和结构化数据
- 淘宝、天猫等电商数据
其实其他的聚框,米宽,箩筐等等,都是大同小异的,本文只是挑选笔者使用比较多的优矿来介绍. 不过现在优矿并不支持实盘.
本文只是做一个量化平台框架的基本介绍, 后续的文章会有进阶, 加入买卖操作, 计算最大回撤, 以及更为复杂的多因子回测. 只要有的数据,基本都可以拿来加入到你的模型之中.
##################################################################
因为优矿本身并不支持可转债的交易,所以系统内置的order,buy,sell函数是无法应用到可转债上面。
不过只要能够获取到每日的行情数据,那么我们就可以自己构造一个交易系统。
核心就就是每次保存你的持仓信息,等到下一次调仓时,对持仓进行比较,对于调出的转债进行移除,新加的转债进行加入。 然后统计一下当前市值,记录下来,就可以得到收益率曲线。
部分代码如下:
import datetime
start = '2018-01-01' # 回测起始时间
end = '2021-05-28' # 回测结束时间
benchmark = 'HS300' # 策略参考标准
freq = 'd' # 策略类型,'d'表示日间策略使用日线回测,'m'表示日内策略使用分钟线回测
refresh_rate = 5 # 调仓频率,表示执行handle_data的时间间隔,若freq = 'd' 时间间隔的单位为交易日,
hold_num = 10 # 持有转债的个数
def initialize(context):
global MyPosition, HighValue, MyCash, Withdraw, HoldRank, HoldNum,Start_Cash
MyPosition = {} #持仓
MyCash = 1000000 #现金
Start_Cash= 1000000
HighValue = MyCash #最高市值
Withdraw = 0 #最大回撤
HoldRank = hold_num #排名多少之后卖出
HoldNum = hold_num #持债支数
def bonds(beginDate=u"20170101",endDate=u"20201215",EB_ENABLE=False):
code_set = set()
df = DataAPI.MktConsBondPremiumGet(SecID=u"",
tickerBond=u"",
beginDate=beginDate,
endDate=endDate,
field=u"",
pandas="1")
cb_df = df.tickerBond.str.startswith(('12', '11'))
df = df[cb_df]
cb_df = df.tickerBond.str.startswith('117')
df = df[~cb_df]
if not EB_ENABLE:
eb = df.secShortNameBond.str.match('\d\d.*?E[123B]') # TODO 判断EB是否过滤
df = df[~eb]
ticker_list =
for _, row in df[['tickerBond', 'secShortNameBond', 'tickerEqu']].iterrows():
if row['tickerBond'] not in code_set:
ticker_list.append((row['tickerBond'], row['secShortNameBond'], row['tickerEqu']))
code_set.add(row['tickerBond'])
return list(code_set)
def handle_data(context):
global MyPosition, HighValue, MyCash, Withdraw, HoldRank, HoldNum,Start_Cash
today_date = context.now.strftime('%Y%m%d')
#每天重新计算双低排名
ticker_list=bonds(today_date,today_date)
data = DataAPI.MktConsBondPerfGet(beginDate=today_date,endDate=today_date,secID='',tickerBond=ticker_list,
tickerEqu=u"",field=u"",pandas="1")
data['secID']=data['tickerBond']
data.set_index('secID',inplace=True)
data['DoubleLow'] = data['closePriceBond'] + data['bondPremRatio']
data = data.sort_values(by="DoubleLow" , ascending=True)
PosValue = MyCash
#抛出不在持有排名HoldRank的
for stock in MyPosition.keys():
try:
CurPrice = data.loc[stock]['closePriceBond']
except:
last_date = (context.now + datetime.timedelta(days=-7)).strftime('%Y%m%d')
CurPrice=get_last_price(stock,last_date,today_date)
PosValue += MyPosition[stock] * CurPrice * 10 #计算当前市值
if stock not in data.index[:HoldRank]:
# 省略若干
log.info('{} 卖出{},{},价格:{}'.format(today_date,stock,name,CurPrice))
if PosValue > HighValue:HighValue = PosValue
if (HighValue - PosValue) / HighValue > Withdraw:Withdraw = (HighValue - PosValue) / HighValue
#买入排在HoldRank内的,总持有数量HoldNum
min_hold = min(HoldRank,len(data.index))
for i in range(min_hold):
if len(MyPosition) >= HoldNum:break
if data.index[i] not in MyPosition.keys():
# 省略若干
log.info('{} 买入{}, {}, 价格{}, 溢价率{}'.format(today_date,data.index[i],name,price,cb_ration))
ratio = (PosValue-Start_Cash)/Start_Cash*100
log.info(today_date + ': 最高市值 ' + str(HighValue) + ' , 当前市值 ' + str(PosValue) + '收益率 : '
+str(ratio)+'% , 最大回撤 ' + str(round(Withdraw*100,2))+'%') [/i][/i]
[i]欢迎讨论探索,星球里面有更多的完整策略与代码,回测数据,结论资源。
[/i]