可转债

可转债

【可转债剩余转股比例数据排序】【2019-05-06】

股票李魔佛 发表了文章 • 0 个评论 • 85 次浏览 • 2019-05-06 15:28 • 来自相关话题

数据如下:










 
剩余的比例越少,上市公司下调转股价的欲望就越少。 也就是会任由可转债在那里晾着,不会积极拉正股。
 
数据定期更新。
 
原创文章,
转载请注明出处:
http://30daydo.com/article/472
  查看全部
数据如下:

剩余比例1.PNG


剩余比例2.PNG

 
剩余的比例越少,上市公司下调转股价的欲望就越少。 也就是会任由可转债在那里晾着,不会积极拉正股。
 
数据定期更新。
 
原创文章,
转载请注明出处:
http://30daydo.com/article/472
 

可转债如何配债

股票李魔佛 发表了文章 • 0 个评论 • 182 次浏览 • 2019-03-29 16:24 • 来自相关话题

由于还是有很多人不断问我如何配债的问题,这里以歌尔声学为例简单说明下。

1、如果你在登记日也就是12月11日收盘时还持有一定数量歌尔声学正股的话,那么你在配债日也就是12月12日就会看到账户里有相应数量的歌尔配债。注意这里的单位是张,如图,





 
由于我只有800股歌尔声学,因此获得了13张配债,1张对应100元,这时双击它,左侧出现了卖出菜单,价格和配债代码都自动填好了,输入13张或者点击全部,然后点“卖出”。(需要注意的是:有些券商这里是买入。)

2、不管是卖出还是买入,然后检查下委托情况和扣款情况,如下图:










 

可以看到我已经被扣款1300元,这样就算成功完成了这次的13张配债 查看全部

由于还是有很多人不断问我如何配债的问题,这里以歌尔声学为例简单说明下。

1、如果你在登记日也就是12月11日收盘时还持有一定数量歌尔声学正股的话,那么你在配债日也就是12月12日就会看到账户里有相应数量的歌尔配债。注意这里的单位是张,如图,

1.jpg

 
由于我只有800股歌尔声学,因此获得了13张配债,1张对应100元,这时双击它,左侧出现了卖出菜单,价格和配债代码都自动填好了,输入13张或者点击全部,然后点“卖出”。(需要注意的是:有些券商这里是买入。)

2、不管是卖出还是买入,然后检查下委托情况和扣款情况,如下图:

2.jpg


3.jpg

 

可以看到我已经被扣款1300元,这样就算成功完成了这次的13张配债

可转债价格分布堆叠图 绘制 可视化 python+pyecharts

量化交易李魔佛 发表了文章 • 0 个评论 • 568 次浏览 • 2019-01-30 10:59 • 来自相关话题

这一节课带大家学习如何利用可视化,更好的呈现数据。
即使你有很多数据,可是,你无法直观地看到数据的总体趋势。使用可视化的绘图,可以帮助我们看到数据背后看不到的数据。 比如我已经有每一个可转债的价格,评级。数据如下:





 点击查看大图

如果我用下面的图形就可以看出规律:




 点击查看大图

横坐标是价格,纵坐标是落在该价格的可转债数量,不同颜色代表不同评级的可转债。
 
可以看到大部分AA-评级(浅橙色)的可转债价格都在100元以下,而AA(浅蓝色)的可转债价格分布较为平均,从90到110都有。而AA+和AAA的一般都在100以上。
 
那么如何使用代码实现呢?from setting import get_mysql_conn,get_engine
import pandas as pd
import pymongo
from pyecharts import Geo,Style,Map
engine = get_engine('db_stock',local='local')
# 堆叠图
from pyecharts import Bar
df = pd.read_sql('tb_bond_jisilu',con=engine)

result ={}
for name,grades in df.groupby('评级'):
# print(name,grades[['可转债名称','可转债价格']])
for each in grades['可转债价格']:
result.setdefault(name,)
result[name].append(each)


# 确定价格的范围

value = [str(i) for i in range(85,140)]
ret = [0]*len(value)
ret1 = dict(zip(value,ret))

ret_A_add = ret1.copy()
for item in result['A+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
ret_A_add[k]+=1

retAA_ = ret1.copy()
for item in result['']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_[k]+=1

retAA = ret1.copy()
for item in result['AA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA[k]+=1

retAA_add = ret1.copy()
for item in result['AA+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_add[k]+=1

retAAA = ret1.copy()
for item in result['AAA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAAA[k]+=1

bar = Bar('可转债价格分布')
bar.add('A+',value,list(ret_A_add.values()),is_stack=True,yaxis_max=11)
bar.add('',value,list(retAA_.values()),is_stack=True,yaxis_max=11)
bar.add('AA',value,list(retAA.values()),is_stack=True,yaxis_max=11)
bar.add('AA+',value,list(retAA_add.values()),is_stack=True,yaxis_max=11)
bar.add('AAA',value,list(retAAA.values()),is_stack=True,yaxis_max=11)
如果没有安装pyecharts,需要用pip安装即可。
 
上面代码运行后就可以得到上面最开始那张堆叠图了。
github:https://github.com/Rockyzsu/convertible_bond​ 
 
 
原创文章
转载请注明出处:
 http://30daydo.com/article/400 

  查看全部
这一节课带大家学习如何利用可视化,更好的呈现数据。
即使你有很多数据,可是,你无法直观地看到数据的总体趋势。使用可视化的绘图,可以帮助我们看到数据背后看不到的数据。 比如我已经有每一个可转债的价格,评级。数据如下:

可转债数据.JPG

 点击查看大图

如果我用下面的图形就可以看出规律:
可转债价格分布.JPG

 点击查看大图

横坐标是价格,纵坐标是落在该价格的可转债数量,不同颜色代表不同评级的可转债。
 
可以看到大部分AA-评级(浅橙色)的可转债价格都在100元以下,而AA(浅蓝色)的可转债价格分布较为平均,从90到110都有。而AA+和AAA的一般都在100以上。
 
那么如何使用代码实现呢?
from  setting import get_mysql_conn,get_engine
import pandas as pd
import pymongo
from pyecharts import Geo,Style,Map
engine = get_engine('db_stock',local='local')
# 堆叠图
from pyecharts import Bar
df = pd.read_sql('tb_bond_jisilu',con=engine)

result ={}
for name,grades in df.groupby('评级'):
# print(name,grades[['可转债名称','可转债价格']])
for each in grades['可转债价格']:
result.setdefault(name,)
result[name].append(each)


# 确定价格的范围

value = [str(i) for i in range(85,140)]
ret = [0]*len(value)
ret1 = dict(zip(value,ret))

ret_A_add = ret1.copy()
for item in result['A+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
ret_A_add[k]+=1

retAA_ = ret1.copy()
for item in result['']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_[k]+=1

retAA = ret1.copy()
for item in result['AA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA[k]+=1

retAA_add = ret1.copy()
for item in result['AA+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_add[k]+=1

retAAA = ret1.copy()
for item in result['AAA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAAA[k]+=1

bar = Bar('可转债价格分布')
bar.add('A+',value,list(ret_A_add.values()),is_stack=True,yaxis_max=11)
bar.add('',value,list(retAA_.values()),is_stack=True,yaxis_max=11)
bar.add('AA',value,list(retAA.values()),is_stack=True,yaxis_max=11)
bar.add('AA+',value,list(retAA_add.values()),is_stack=True,yaxis_max=11)
bar.add('AAA',value,list(retAAA.values()),is_stack=True,yaxis_max=11)

如果没有安装pyecharts,需要用pip安装即可。
 
上面代码运行后就可以得到上面最开始那张堆叠图了。
github:https://github.com/Rockyzsu/convertible_bond​ 
 
 
原创文章
转载请注明出处:
 http://30daydo.com/article/400 

 

可转债正股的PB<1时,可转债不可以下调转股价

投资李魔佛 发表了文章 • 0 个评论 • 427 次浏览 • 2018-11-26 14:17 • 来自相关话题

“修正后的转股价格应不低于审议上述方案的股东大会召开日前二十个交易日公司A股股票交易均价,同时修正后的转股价格不低于最近一期经审计的每股净资产和股票面值。”
这是大部分转债“转股价格特别修正条款”的标准表述。
 
“修正后的转股价格应不低于审议上述方案的股东大会召开日前二十个交易日公司A股股票交易均价,同时修正后的转股价格不低于最近一期经审计的每股净资产和股票面值。”
这是大部分转债“转股价格特别修正条款”的标准表述。
 

可转债价格分布堆叠图 绘制 可视化 python+pyecharts

量化交易李魔佛 发表了文章 • 0 个评论 • 568 次浏览 • 2019-01-30 10:59 • 来自相关话题

这一节课带大家学习如何利用可视化,更好的呈现数据。
即使你有很多数据,可是,你无法直观地看到数据的总体趋势。使用可视化的绘图,可以帮助我们看到数据背后看不到的数据。 比如我已经有每一个可转债的价格,评级。数据如下:





 点击查看大图

如果我用下面的图形就可以看出规律:




 点击查看大图

横坐标是价格,纵坐标是落在该价格的可转债数量,不同颜色代表不同评级的可转债。
 
可以看到大部分AA-评级(浅橙色)的可转债价格都在100元以下,而AA(浅蓝色)的可转债价格分布较为平均,从90到110都有。而AA+和AAA的一般都在100以上。
 
那么如何使用代码实现呢?from setting import get_mysql_conn,get_engine
import pandas as pd
import pymongo
from pyecharts import Geo,Style,Map
engine = get_engine('db_stock',local='local')
# 堆叠图
from pyecharts import Bar
df = pd.read_sql('tb_bond_jisilu',con=engine)

result ={}
for name,grades in df.groupby('评级'):
# print(name,grades[['可转债名称','可转债价格']])
for each in grades['可转债价格']:
result.setdefault(name,)
result[name].append(each)


# 确定价格的范围

value = [str(i) for i in range(85,140)]
ret = [0]*len(value)
ret1 = dict(zip(value,ret))

ret_A_add = ret1.copy()
for item in result['A+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
ret_A_add[k]+=1

retAA_ = ret1.copy()
for item in result['']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_[k]+=1

retAA = ret1.copy()
for item in result['AA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA[k]+=1

retAA_add = ret1.copy()
for item in result['AA+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_add[k]+=1

retAAA = ret1.copy()
for item in result['AAA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAAA[k]+=1

bar = Bar('可转债价格分布')
bar.add('A+',value,list(ret_A_add.values()),is_stack=True,yaxis_max=11)
bar.add('',value,list(retAA_.values()),is_stack=True,yaxis_max=11)
bar.add('AA',value,list(retAA.values()),is_stack=True,yaxis_max=11)
bar.add('AA+',value,list(retAA_add.values()),is_stack=True,yaxis_max=11)
bar.add('AAA',value,list(retAAA.values()),is_stack=True,yaxis_max=11)
如果没有安装pyecharts,需要用pip安装即可。
 
上面代码运行后就可以得到上面最开始那张堆叠图了。
github:https://github.com/Rockyzsu/convertible_bond​ 
 
 
原创文章
转载请注明出处:
 http://30daydo.com/article/400 

  查看全部
这一节课带大家学习如何利用可视化,更好的呈现数据。
即使你有很多数据,可是,你无法直观地看到数据的总体趋势。使用可视化的绘图,可以帮助我们看到数据背后看不到的数据。 比如我已经有每一个可转债的价格,评级。数据如下:

可转债数据.JPG

 点击查看大图

如果我用下面的图形就可以看出规律:
可转债价格分布.JPG

 点击查看大图

横坐标是价格,纵坐标是落在该价格的可转债数量,不同颜色代表不同评级的可转债。
 
可以看到大部分AA-评级(浅橙色)的可转债价格都在100元以下,而AA(浅蓝色)的可转债价格分布较为平均,从90到110都有。而AA+和AAA的一般都在100以上。
 
那么如何使用代码实现呢?
from  setting import get_mysql_conn,get_engine
import pandas as pd
import pymongo
from pyecharts import Geo,Style,Map
engine = get_engine('db_stock',local='local')
# 堆叠图
from pyecharts import Bar
df = pd.read_sql('tb_bond_jisilu',con=engine)

result ={}
for name,grades in df.groupby('评级'):
# print(name,grades[['可转债名称','可转债价格']])
for each in grades['可转债价格']:
result.setdefault(name,)
result[name].append(each)


# 确定价格的范围

value = [str(i) for i in range(85,140)]
ret = [0]*len(value)
ret1 = dict(zip(value,ret))

ret_A_add = ret1.copy()
for item in result['A+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
ret_A_add[k]+=1

retAA_ = ret1.copy()
for item in result['']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_[k]+=1

retAA = ret1.copy()
for item in result['AA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA[k]+=1

retAA_add = ret1.copy()
for item in result['AA+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_add[k]+=1

retAAA = ret1.copy()
for item in result['AAA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAAA[k]+=1

bar = Bar('可转债价格分布')
bar.add('A+',value,list(ret_A_add.values()),is_stack=True,yaxis_max=11)
bar.add('',value,list(retAA_.values()),is_stack=True,yaxis_max=11)
bar.add('AA',value,list(retAA.values()),is_stack=True,yaxis_max=11)
bar.add('AA+',value,list(retAA_add.values()),is_stack=True,yaxis_max=11)
bar.add('AAA',value,list(retAAA.values()),is_stack=True,yaxis_max=11)

如果没有安装pyecharts,需要用pip安装即可。
 
上面代码运行后就可以得到上面最开始那张堆叠图了。
github:https://github.com/Rockyzsu/convertible_bond​ 
 
 
原创文章
转载请注明出处:
 http://30daydo.com/article/400 

 

【可转债剩余转股比例数据排序】【2019-05-06】

股票李魔佛 发表了文章 • 0 个评论 • 85 次浏览 • 2019-05-06 15:28 • 来自相关话题

数据如下:










 
剩余的比例越少,上市公司下调转股价的欲望就越少。 也就是会任由可转债在那里晾着,不会积极拉正股。
 
数据定期更新。
 
原创文章,
转载请注明出处:
http://30daydo.com/article/472
  查看全部
数据如下:

剩余比例1.PNG


剩余比例2.PNG

 
剩余的比例越少,上市公司下调转股价的欲望就越少。 也就是会任由可转债在那里晾着,不会积极拉正股。
 
数据定期更新。
 
原创文章,
转载请注明出处:
http://30daydo.com/article/472
 

可转债如何配债

股票李魔佛 发表了文章 • 0 个评论 • 182 次浏览 • 2019-03-29 16:24 • 来自相关话题

由于还是有很多人不断问我如何配债的问题,这里以歌尔声学为例简单说明下。

1、如果你在登记日也就是12月11日收盘时还持有一定数量歌尔声学正股的话,那么你在配债日也就是12月12日就会看到账户里有相应数量的歌尔配债。注意这里的单位是张,如图,





 
由于我只有800股歌尔声学,因此获得了13张配债,1张对应100元,这时双击它,左侧出现了卖出菜单,价格和配债代码都自动填好了,输入13张或者点击全部,然后点“卖出”。(需要注意的是:有些券商这里是买入。)

2、不管是卖出还是买入,然后检查下委托情况和扣款情况,如下图:










 

可以看到我已经被扣款1300元,这样就算成功完成了这次的13张配债 查看全部

由于还是有很多人不断问我如何配债的问题,这里以歌尔声学为例简单说明下。

1、如果你在登记日也就是12月11日收盘时还持有一定数量歌尔声学正股的话,那么你在配债日也就是12月12日就会看到账户里有相应数量的歌尔配债。注意这里的单位是张,如图,

1.jpg

 
由于我只有800股歌尔声学,因此获得了13张配债,1张对应100元,这时双击它,左侧出现了卖出菜单,价格和配债代码都自动填好了,输入13张或者点击全部,然后点“卖出”。(需要注意的是:有些券商这里是买入。)

2、不管是卖出还是买入,然后检查下委托情况和扣款情况,如下图:

2.jpg


3.jpg

 

可以看到我已经被扣款1300元,这样就算成功完成了这次的13张配债

可转债价格分布堆叠图 绘制 可视化 python+pyecharts

量化交易李魔佛 发表了文章 • 0 个评论 • 568 次浏览 • 2019-01-30 10:59 • 来自相关话题

这一节课带大家学习如何利用可视化,更好的呈现数据。
即使你有很多数据,可是,你无法直观地看到数据的总体趋势。使用可视化的绘图,可以帮助我们看到数据背后看不到的数据。 比如我已经有每一个可转债的价格,评级。数据如下:





 点击查看大图

如果我用下面的图形就可以看出规律:




 点击查看大图

横坐标是价格,纵坐标是落在该价格的可转债数量,不同颜色代表不同评级的可转债。
 
可以看到大部分AA-评级(浅橙色)的可转债价格都在100元以下,而AA(浅蓝色)的可转债价格分布较为平均,从90到110都有。而AA+和AAA的一般都在100以上。
 
那么如何使用代码实现呢?from setting import get_mysql_conn,get_engine
import pandas as pd
import pymongo
from pyecharts import Geo,Style,Map
engine = get_engine('db_stock',local='local')
# 堆叠图
from pyecharts import Bar
df = pd.read_sql('tb_bond_jisilu',con=engine)

result ={}
for name,grades in df.groupby('评级'):
# print(name,grades[['可转债名称','可转债价格']])
for each in grades['可转债价格']:
result.setdefault(name,)
result[name].append(each)


# 确定价格的范围

value = [str(i) for i in range(85,140)]
ret = [0]*len(value)
ret1 = dict(zip(value,ret))

ret_A_add = ret1.copy()
for item in result['A+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
ret_A_add[k]+=1

retAA_ = ret1.copy()
for item in result['']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_[k]+=1

retAA = ret1.copy()
for item in result['AA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA[k]+=1

retAA_add = ret1.copy()
for item in result['AA+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_add[k]+=1

retAAA = ret1.copy()
for item in result['AAA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAAA[k]+=1

bar = Bar('可转债价格分布')
bar.add('A+',value,list(ret_A_add.values()),is_stack=True,yaxis_max=11)
bar.add('',value,list(retAA_.values()),is_stack=True,yaxis_max=11)
bar.add('AA',value,list(retAA.values()),is_stack=True,yaxis_max=11)
bar.add('AA+',value,list(retAA_add.values()),is_stack=True,yaxis_max=11)
bar.add('AAA',value,list(retAAA.values()),is_stack=True,yaxis_max=11)
如果没有安装pyecharts,需要用pip安装即可。
 
上面代码运行后就可以得到上面最开始那张堆叠图了。
github:https://github.com/Rockyzsu/convertible_bond​ 
 
 
原创文章
转载请注明出处:
 http://30daydo.com/article/400 

  查看全部
这一节课带大家学习如何利用可视化,更好的呈现数据。
即使你有很多数据,可是,你无法直观地看到数据的总体趋势。使用可视化的绘图,可以帮助我们看到数据背后看不到的数据。 比如我已经有每一个可转债的价格,评级。数据如下:

可转债数据.JPG

 点击查看大图

如果我用下面的图形就可以看出规律:
可转债价格分布.JPG

 点击查看大图

横坐标是价格,纵坐标是落在该价格的可转债数量,不同颜色代表不同评级的可转债。
 
可以看到大部分AA-评级(浅橙色)的可转债价格都在100元以下,而AA(浅蓝色)的可转债价格分布较为平均,从90到110都有。而AA+和AAA的一般都在100以上。
 
那么如何使用代码实现呢?
from  setting import get_mysql_conn,get_engine
import pandas as pd
import pymongo
from pyecharts import Geo,Style,Map
engine = get_engine('db_stock',local='local')
# 堆叠图
from pyecharts import Bar
df = pd.read_sql('tb_bond_jisilu',con=engine)

result ={}
for name,grades in df.groupby('评级'):
# print(name,grades[['可转债名称','可转债价格']])
for each in grades['可转债价格']:
result.setdefault(name,)
result[name].append(each)


# 确定价格的范围

value = [str(i) for i in range(85,140)]
ret = [0]*len(value)
ret1 = dict(zip(value,ret))

ret_A_add = ret1.copy()
for item in result['A+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
ret_A_add[k]+=1

retAA_ = ret1.copy()
for item in result['']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_[k]+=1

retAA = ret1.copy()
for item in result['AA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA[k]+=1

retAA_add = ret1.copy()
for item in result['AA+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_add[k]+=1

retAAA = ret1.copy()
for item in result['AAA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAAA[k]+=1

bar = Bar('可转债价格分布')
bar.add('A+',value,list(ret_A_add.values()),is_stack=True,yaxis_max=11)
bar.add('',value,list(retAA_.values()),is_stack=True,yaxis_max=11)
bar.add('AA',value,list(retAA.values()),is_stack=True,yaxis_max=11)
bar.add('AA+',value,list(retAA_add.values()),is_stack=True,yaxis_max=11)
bar.add('AAA',value,list(retAAA.values()),is_stack=True,yaxis_max=11)

如果没有安装pyecharts,需要用pip安装即可。
 
上面代码运行后就可以得到上面最开始那张堆叠图了。
github:https://github.com/Rockyzsu/convertible_bond​ 
 
 
原创文章
转载请注明出处:
 http://30daydo.com/article/400 

 

可转债正股的PB<1时,可转债不可以下调转股价

投资李魔佛 发表了文章 • 0 个评论 • 427 次浏览 • 2018-11-26 14:17 • 来自相关话题

“修正后的转股价格应不低于审议上述方案的股东大会召开日前二十个交易日公司A股股票交易均价,同时修正后的转股价格不低于最近一期经审计的每股净资产和股票面值。”
这是大部分转债“转股价格特别修正条款”的标准表述。
 
“修正后的转股价格应不低于审议上述方案的股东大会召开日前二十个交易日公司A股股票交易均价,同时修正后的转股价格不低于最近一期经审计的每股净资产和股票面值。”
这是大部分转债“转股价格特别修正条款”的标准表述。