python量化分析: 股票涨停后该不该卖, 怕砸板还是怕卖飞 ?
相信大家都有过这样的经验,某个股票忽然直线拉升打到涨停板,然后就会纠结当天要不要卖掉,如果股票没封住,注定会回落,这样会失去部分的利润。 但是又怕卖了后,封死涨停板,然后当天再也买不回来,然后第二天呢,高开就不想去追,或者去追高使得持有该股的成本变高了。
那么触及涨停板的个股我们应该继续持有,还是卖掉,还是卖掉做T接回来呢?
接下来用数据说话。【数据使用通联实验室的数据源】
首先获取当前市场上所有股票
然后获取每一个股票的日k线数据,可以设定一个时间段,我抓取了2012年到今天(2018-06-14)的所有数据,如果是次新股,那么数据就是上市当天到今天的数据。
抓取到的数据包含以下的字段:
点击查看大图
但是实际用到的字段只有几个, 开盘价,最高价,涨幅,昨天收盘价。
这里我排除了一字板开盘的个股,因为里面含有新股,会导致数据不精确,【后续我会统计,一字板开盘盘中被砸开的概率】,而且数据也排除了ST的个股,因为本人从来不买ST股,所以不会对ST进行统计。
fbl就是封板率的一个列表,包含了每只股票的触及涨停价后封板的概率。 然后对整体的数据取平均值:
最后得到的结果是:
64.0866513726
所以保持住涨停的概率还是大一些。所以站在概率大的一边上,触及涨停的时候应该继续持有,会有62.5%会到收盘保持涨停价。
(待续)
原创文章,转载请注明出处:
http://30daydo.com/article/331
那么触及涨停板的个股我们应该继续持有,还是卖掉,还是卖掉做T接回来呢?
接下来用数据说话。【数据使用通联实验室的数据源】
首先获取当前市场上所有股票
all_stocks = DataAPI.SecTypeRegionRelGet(secID=u"",ticker=u"",typeID=u"",field=u"",pandas="1")
然后获取每一个股票的日k线数据,可以设定一个时间段,我抓取了2012年到今天(2018-06-14)的所有数据,如果是次新股,那么数据就是上市当天到今天的数据。
抓取到的数据包含以下的字段:
点击查看大图
但是实际用到的字段只有几个, 开盘价,最高价,涨幅,昨天收盘价。
这里我排除了一字板开盘的个股,因为里面含有新股,会导致数据不精确,【后续我会统计,一字板开盘盘中被砸开的概率】,而且数据也排除了ST的个股,因为本人从来不买ST股,所以不会对ST进行统计。
fbl =
for code in all_stocks['secID']:
df = DataAPI.MktEqudGet(secID=code,ticker=u"",tradeDate=u"",beginDate=u"20120101",endDate=u"",isOpen="",field=u"",pandas="1")
df['ztj']=map(lambda x:round(x,2),df['preClosePrice']*1.1)
df['chgPct']=df['chgPct']*100
# 非一字板
zt = df[(df['ztj']==df['highestPrice']) & (df['openPrice']!=df['highestPrice'])]
fz= df[(df['ztj']==df['highestPrice']) & (df['openPrice']!=df['highestPrice'])&(df['closePrice']==df['highestPrice'])]
try:
f = len(fz)*1.00/len(zt)*100
fbl.append((code,f))
except Exception,e:
print e
print code
fbl就是封板率的一个列表,包含了每只股票的触及涨停价后封板的概率。 然后对整体的数据取平均值:
dx= dict(fbl)
x = np.array(dx.values())
print x.mean()
最后得到的结果是:
64.0866513726
所以保持住涨停的概率还是大一些。所以站在概率大的一边上,触及涨停的时候应该继续持有,会有62.5%会到收盘保持涨停价。
(待续)
原创文章,转载请注明出处:
http://30daydo.com/article/331
1 个评论
运行不了啊。这些程序