异步爬虫aiohttp post提交数据
基本的用法:
完整的例子:
async def fetch(session,url, data):
async with session.post(url=url, data=data, headers=headers) as response:
return await response.json()
完整的例子:
import aiohttp收起阅读 »
import asyncio
page = 30
post_data = {
'page': 1,
'pageSize': 10,
'keyWord': '',
'dpIds': '',
}
headers = {
"Accept-Encoding": "gzip, deflate",
"Accept-Language": "en-US,en;q=0.9",
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.108 Safari/537.36",
"X-Requested-With": "XMLHttpRequest",
}
result=
async def fetch(session,url, data):
async with session.post(url=url, data=data, headers=headers) as response:
return await response.json()
async def parse(html):
xzcf_list = html.get('newtxzcfList')
if xzcf_list is None:
return
for i in xzcf_list:
result.append(i)
async def downlod(page):
data=post_data.copy()
data['page']=page
url = 'http://credit.chaozhou.gov.cn/tfieldTypeActionJson!initXzcfListnew.do'
async with aiohttp.ClientSession() as session:
html=await fetch(session,url,data)
await parse(html)
loop = asyncio.get_event_loop()
tasks=[asyncio.ensure_future(downlod(i)) for i in range(1,page)]
tasks=asyncio.gather(*tasks)
# print(tasks)
loop.run_until_complete(tasks)
# loop.close()
# print(result)
count=0
for i in result:
print(i.get('cfXdrMc'))
count+=1
print(f'total {count}')
python异步aiohttp爬虫 - 异步爬取链家数据
import requests收起阅读 »
from lxml import etree
import asyncio
import aiohttp
import pandas
import re
import math
import time
loction_info = ''' 1→杭州
2→武汉
3→北京
按ENTER确认:'''
loction_select = input(loction_info)
loction_dic = {'1': 'hz',
'2': 'wh',
'3': 'bj'}
city_url = 'https://{}.lianjia.com/ershoufang/'.format(loction_dic[loction_select])
down = input('请输入价格下限(万):')
up = input('请输入价格上限(万):')
inter_list = [(int(down), int(up))]
def half_inter(inter):
lower = inter[0]
upper = inter[1]
delta = int((upper - lower) / 2)
inter_list.remove(inter)
print('已经缩小价格区间', inter)
inter_list.append((lower, lower + delta))
inter_list.append((lower + delta, upper))
pagenum = {}
def get_num(inter):
url = city_url + 'bp{}ep{}/'.format(inter[0], inter[1])
r = requests.get(url).text
print(r)
num = int(etree.HTML(r).xpath("//h2[@class='total fl']/span/text()")[0].strip())
pagenum[(inter[0], inter[1])] = num
return num
totalnum = get_num(inter_list[0])
judge = True
while judge:
a = [get_num(x) > 3000 for x in inter_list]
if True in a:
judge = True
else:
judge = False
for i in inter_list:
if get_num(i) > 3000:
half_inter(i)
print('价格区间缩小完毕!')
url_lst = []
url_lst_failed = []
url_lst_successed = []
url_lst_duplicated = []
for i in inter_list:
totalpage = math.ceil(pagenum[i] / 30)
for j in range(1, totalpage + 1):
url = city_url + 'pg{}bp{}ep{}/'.format(j, i[0], i[1])
url_lst.append(url)
print('url列表获取完毕!')
info_lst = []
async def get_info(url):
async with aiohttp.ClientSession() as session:
async with session.get(url, timeout=5) as resp:
if resp.status != 200:
url_lst_failed.append(url)
else:
url_lst_successed.append(url)
r = await resp.text()
nodelist = etree.HTML(r).xpath("//ul[@class='sellListContent']/li")
# print('-------------------------------------------------------------')
# print('开始抓取第{}个页面的数据,共计{}个页面'.format(url_lst.index(url),len(url_lst)))
# print('开始抓取第{}个页面的数据,共计{}个页面'.format(url_lst.index(url), len(url_lst)))
# print('开始抓取第{}个页面的数据,共计{}个页面'.format(url_lst.index(url), len(url_lst)))
# print('-------------------------------------------------------------')
info_dic = {}
index = 1
print('开始抓取{}'.format(resp.url))
print('开始抓取{}'.format(resp.url))
print('开始抓取{}'.format(resp.url))
for node in nodelist:
try:
info_dic['title'] = node.xpath(".//div[@class='title']/a/text()")[0]
except:
info_dic['title'] = '/'
try:
info_dic['href'] = node.xpath(".//div[@class='title']/a/@href")[0]
except:
info_dic['href'] = '/'
try:
info_dic['xiaoqu'] = \
node.xpath(".//div[@class='houseInfo']")[0].xpath('string(.)').replace(' ', '').split('|')[0]
except:
info_dic['xiaoqu'] = '/'
try:
info_dic['huxing'] = \
node.xpath(".//div[@class='houseInfo']")[0].xpath('string(.)').replace(' ', '').split('|')[1]
except:
info_dic['huxing'] = '/'
try:
info_dic['area'] = \
node.xpath(".//div[@class='houseInfo']")[0].xpath('string(.)').replace(' ', '').split('|')[2]
except:
info_dic['area'] = '/'
try:
info_dic['chaoxiang'] = \
node.xpath(".//div[@class='houseInfo']")[0].xpath('string(.)').replace(' ', '').split('|')[3]
except:
info_dic['chaoxiang'] = '/'
try:
info_dic['zhuangxiu'] = \
node.xpath(".//div[@class='houseInfo']")[0].xpath('string(.)').replace(' ', '').split('|')[4]
except:
info_dic['zhuangxiu'] = '/'
try:
info_dic['dianti'] = \
node.xpath(".//div[@class='houseInfo']")[0].xpath('string(.)').replace(' ', '').split('|')[5]
except:
info_dic['dianti'] = '/'
try:
info_dic['louceng'] = re.findall('\((.*)\)', node.xpath(".//div[@class='positionInfo']/text()")[0])
except:
info_dic['louceng'] = '/'
try:
info_dic['nianxian'] = re.findall('\)(.*?)年', node.xpath(".//div[@class='positionInfo']/text()")[0])
except:
info_dic['nianxian'] = '/'
try:
info_dic['guanzhu'] = ''.join(re.findall('[0-9]', node.xpath(".//div[@class='followInfo']/text()")[
0].replace(' ', '').split('/')[0]))
except:
info_dic['guanzhu'] = '/'
try:
info_dic['daikan'] = ''.join(re.findall('[0-9]',
node.xpath(".//div[@class='followInfo']/text()")[0].replace(
' ', '').split('/')[1]))
except:
info_dic['daikan'] = '/'
try:
info_dic['fabu'] = node.xpath(".//div[@class='followInfo']/text()")[0].replace(' ', '').split('/')[
2]
except:
info_dic['fabu'] = '/'
try:
info_dic['totalprice'] = node.xpath(".//div[@class='totalPrice']/span/text()")[0]
except:
info_dic['totalprice'] = '/'
try:
info_dic['unitprice'] = node.xpath(".//div[@class='unitPrice']/span/text()")[0].replace('单价', '')
except:
info_dic['unitprice'] = '/'
if True in [info_dic['href'] in dic.values() for dic in info_lst]:
url_lst_duplicated.append(info_dic)
else:
info_lst.append(info_dic)
print('第{}条: {}→房屋信息抓取完毕!'.format(index, info_dic['title']))
index += 1
info_dic = {}
start = time.time()
# 首次抓取url_lst中的信息,部分url没有对其发起请求,不知道为什么
tasks = [asyncio.ensure_future(get_info(url)) for url in url_lst]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
# 将没有发起请求的url放入一个列表,对其进行循环抓取,直到所有url都被发起请求
url_lst_unrequested = []
for url in url_lst:
if url not in url_lst_successed or url_lst_failed:
url_lst_unrequested.append(url)
while len(url_lst_unrequested) > 0:
tasks_unrequested = [asyncio.ensure_future(get_info(url)) for url in url_lst_unrequested]
loop.run_until_complete(asyncio.wait(tasks_unrequested))
url_lst_unrequested = []
for url in url_lst:
if url not in url_lst_successed:
url_lst_unrequested.append(url)
end = time.time()
print('当前价格区间段内共有{}套二手房源\(包含{}条重复房源\),实际获得{}条房源信息。'.format(totalnum, len(url_lst_duplicated), len(info_lst)))
print('总共耗时{}秒'.format(end - start))
df = pandas.DataFrame(info_lst)
df.to_csv("ljwh.csv", encoding='gbk')
神经网络中数值梯度的计算 python代码
深度学习入门python
import matplotlib.pyplot as plt收起阅读 »
import numpy as np
import time
from collections import OrderedDict
def softmax(a):
a = a - np.max(a)
exp_a = np.exp(a)
exp_a_sum = np.sum(exp_a)
return exp_a / exp_a_sum
def cross_entropy_error(t, y):
delta = 1e-7
s = -1 * np.sum(t * np.log(y + delta))
# print('cross entropy ',s)
return s
class simpleNet:
def __init__(self):
self.W = np.random.randn(2, 3)
def predict(self, x):
print('current w',self.W)
return np.dot(x, self.W)
def loss(self, x, t):
z = self.predict(x)
# print(z)
# print(z.ndim)
y = softmax(z)
# print('y',y)
loss = cross_entropy_error(y, t) # y为预测的值
return loss
def numerical_gradient_(f, x): # 针对2维的情况 甚至是多维
h = 1e-4 # 0.0001
grad = np.zeros_like(x)
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
idx = it.multi_index
print('idx', idx)
tmp_val = x[idx]
x[idx] = float(tmp_val) + h
fxh1 = f(x) # f(x+h)
print('fxh1 ', fxh1)
# print('current W', net.W)
x[idx] = tmp_val - h
fxh2 = f(x) # f(x-h)
print('fxh2 ', fxh2)
# print('next currnet W ', net.W)
grad[idx] = (fxh1 - fxh2) / (2 * h)
x[idx] = tmp_val # 还原值
it.iternext()
return grad
net = simpleNet()
x=np.array([0.6,0.9])
t = np.array([0.0,0.0,1.0])
def f(W):
return net.loss(x,t)
grads =numerical_gradient_(f,net.W)
print(grads)
【可转债剩余转股比例数据排序】【2019-05-06】
数据如下:
剩余的比例越少,上市公司下调转股价的欲望就越少。 也就是会任由可转债在那里晾着,不会积极拉正股。
数据定期更新。
原创文章,
转载请注明出处:
http://30daydo.com/article/472
收起阅读 »
剩余的比例越少,上市公司下调转股价的欲望就越少。 也就是会任由可转债在那里晾着,不会积极拉正股。
数据定期更新。
原创文章,
转载请注明出处:
http://30daydo.com/article/472
收起阅读 »
pycharm激活码 有效期到2019年11月
pycharm专业版激活码如下,亲测有效,有效期到2019年11月7日
转载请注明出处:
http://30daydo.com/article/470
收起阅读 »
MTW881U3Z5-eyJsaWNlbnNlSWQiOiJNVFc4ODFVM1o1IiwibGljZW5zZWVOYW1lIjoiTnNzIEltIiwiYXNzaWduZWVOYW1lIjoiIiwiYXNzaWduZWVFbWFpbCI6IiIsImxpY2Vuc2VSZXN0cmljdGlvbiI6IkZvciBlZHVjYXRpb25hbCB1c2Ugb25seSIsImNoZWNrQ29uY3VycmVudFVzZSI6ZmFsc2UsInByb2R1Y3RzIjpbeyJjb2RlIjoiSUkiLCJwYWlkVXBUbyI6IjIwMTktMTEtMDYifSx7ImNvZGUiOiJBQyIsInBhaWRVcFRvIjoiMjAxOS0xMS0wNiJ9LHsiY29kZSI6IkRQTiIsInBhaWRVcFRvIjoiMjAxOS0xMS0wNiJ9LHsiY29kZSI6IlBTIiwicGFpZFVwVG8iOiIyMDE5LTExLTA2In0seyJjb2RlIjoiR08iLCJwYWlkVXBUbyI6IjIwMTktMTEtMDYifSx7ImNvZGUiOiJETSIsInBhaWRVcFRvIjoiMjAxOS0xMS0wNiJ9LHsiY29kZSI6IkNMIiwicGFpZFVwVG8iOiIyMDE5LTExLTA2In0seyJjb2RlIjoiUlMwIiwicGFpZFVwVG8iOiIyMDE5LTExLTA2In0seyJjb2RlIjoiUkMiLCJwYWlkVXBUbyI6IjIwMTktMTEtMDYifSx7ImNvZGUiOiJSRCIsInBhaWRVcFRvIjoiMjAxOS0xMS0wNiJ9LHsiY29kZSI6IlBDIiwicGFpZFVwVG8iOiIyMDE5LTExLTA2In0seyJjb2RlIjoiUk0iLCJwYWlkVXBUbyI6IjIwMTktMTEtMDYifSx7ImNvZGUiOiJXUyIsInBhaWRVcFRvIjoiMjAxOS0xMS0wNiJ9LHsiY29kZSI6IkRCIiwicGFpZFVwVG8iOiIyMDE5LTExLTA2In0seyJjb2RlIjoiREMiLCJwYWlkVXBUbyI6IjIwMTktMTEtMDYifSx7ImNvZGUiOiJSU1UiLCJwYWlkVXBUbyI6IjIwMTktMTEtMDYifV0sImhhc2giOiIxMDgyODE0Ni8wIiwiZ3JhY2VQZXJpb2REYXlzIjowLCJhdXRvUHJvbG9uZ2F0ZWQiOmZhbHNlLCJpc0F1dG9Qcm9sb25nYXRlZCI6ZmFsc2V9-aKyalfjUfiV5UXfhaMGgOqrMzTYy2rnsmobL47k8tTpR/jvG6HeL3FxxleetI+W+Anw3ZSe8QAMsSxqVS4podwlQgIe7f+3w7zyAT1j8HMVlfl2h96KzygdGpDSbwTbwOkJ6/5TQOPgAP86mkaSiM97KgvkZV/2nXQHRz1yhm+MT+OsioTwxDhd/22sSGq6KuIztZ03UvSciEmyrPdl2ueJw1WuT9YmFjdtTm9G7LuXvCM6eav+BgCRm+wwtUeDfoQqigbp0t6FQgkdQrcjoWvLSB0IUgp/f4qGf254fA7lXskT2VCFdDvi0jgxLyMVct1cKnPdM6fkHnbdSXKYDWw==-MIIElTCCAn2gAwIBAgIBCTANBgkqhkiG9w0BAQsFADAYMRYwFAYDVQQDDA1KZXRQcm9maWxlIENBMB4XDTE4MTEwMTEyMjk0NloXDTIwMTEwMjEyMjk0NlowaDELMAkGA1UEBhMCQ1oxDjAMBgNVBAgMBU51c2xlMQ8wDQYDVQQHDAZQcmFndWUxGTAXBgNVBAoMEEpldEJyYWlucyBzLnIuby4xHTAbBgNVBAMMFHByb2QzeS1mcm9tLTIwMTgxMTAxMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxcQkq+zdxlR2mmRYBPzGbUNdMN6OaXiXzxIWtMEkrJMO/5oUfQJbLLuMSMK0QHFmaI37WShyxZcfRCidwXjot4zmNBKnlyHodDij/78TmVqFl8nOeD5+07B8VEaIu7c3E1N+e1doC6wht4I4+IEmtsPAdoaj5WCQVQbrI8KeT8M9VcBIWX7fD0fhexfg3ZRt0xqwMcXGNp3DdJHiO0rCdU+Itv7EmtnSVq9jBG1usMSFvMowR25mju2JcPFp1+I4ZI+FqgR8gyG8oiNDyNEoAbsR3lOpI7grUYSvkB/xVy/VoklPCK2h0f0GJxFjnye8NT1PAywoyl7RmiAVRE/EKwIDAQABo4GZMIGWMAkGA1UdEwQCMAAwHQYDVR0OBBYEFGEpG9oZGcfLMGNBkY7SgHiMGgTcMEgGA1UdIwRBMD+AFKOetkhnQhI2Qb1t4Lm0oFKLl/GzoRykGjAYMRYwFAYDVQQDDA1KZXRQcm9maWxlIENBggkA0myxg7KDeeEwEwYDVR0lBAwwCgYIKwYBBQUHAwEwCwYDVR0PBAQDAgWgMA0GCSqGSIb3DQEBCwUAA4ICAQAF8uc+YJOHHwOFcPzmbjcxNDuGoOUIP+2h1R75Lecswb7ru2LWWSUMtXVKQzChLNPn/72W0k+oI056tgiwuG7M49LXp4zQVlQnFmWU1wwGvVhq5R63Rpjx1zjGUhcXgayu7+9zMUW596Lbomsg8qVve6euqsrFicYkIIuUu4zYPndJwfe0YkS5nY72SHnNdbPhEnN8wcB2Kz+OIG0lih3yz5EqFhld03bGp222ZQCIghCTVL6QBNadGsiN/lWLl4JdR3lJkZzlpFdiHijoVRdWeSWqM4y0t23c92HXKrgppoSV18XMxrWVdoSM3nuMHwxGhFyde05OdDtLpCv+jlWf5REAHHA201pAU6bJSZINyHDUTB+Beo28rRXSwSh3OUIvYwKNVeoBY+KwOJ7WnuTCUq1meE6GkKc4D/cXmgpOyW/1SmBz3XjVIi/zprZ0zf3qH5mkphtg6ksjKgKjmx1cXfZAAX6wcDBNaCL+Ortep1Dh8xDUbqbBVNBL4jbiL3i3xsfNiyJgaZ5sX7i8tmStEpLbPwvHcByuf59qJhV/bZOl8KqJBETCDJcY6O2aqhTUy+9x93ThKs1GKrRPePrWPluud7ttlgtRveit/pcBrnQcXOl1rHq7ByB8CFAxNotRUYL9IF5n3wJOgkPojMy6jetQA5Ogc8Sm7RG6vg1yow==原创文章
转载请注明出处:
http://30daydo.com/article/470
收起阅读 »
发现numpy一个很坑的问题,要一定级别的高手才能发现问题
一个二元一次方程:
y=X0**2+X1**2 # **2 是平方
下面是计算y的偏导数,分布计算X0和X1的偏导
然后调用
计算的是二元一次方程 y=X0**2+X1**2 在点(3,4)的偏导的值
得到的是什么结果?
为什么会得到这样的结果?
小白一般要花点时间才能找到原因。
收起阅读 »
y=X0**2+X1**2 # **2 是平方
def function_2(x):
return x[0]**2+x[1]**2
下面是计算y的偏导数,分布计算X0和X1的偏导
def numerical_gradient(f,x):
grad = np.zeros_like(x)
h=1e-4
for idx in range(x.size):
temp_v = x[idx]
x[idx]=temp_v+h
f1=f(x)
print(x,f1)
x[idx]=temp_v-h
f2=f(x)
print(x,f2)
ret = (f1-f2)/(2*h)
print(ret)
x[idx]=temp_v
grad[idx]=ret
return grad
然后调用
numerical_gradient(function_2,np.array([3,4]))
计算的是二元一次方程 y=X0**2+X1**2 在点(3,4)的偏导的值
得到的是什么结果?
为什么会得到这样的结果?
小白一般要花点时间才能找到原因。
收起阅读 »
numpy和dataframe轴的含义,axis为负数的含义
比如有数组:
a
a有3个中括号,那么就有3条轴,从0开始到2,分别是axis=0,1,2
那么我要对a进行求和,分别用axis=0,1,2进行运行。
同理:
得到:
而轴的负数,axis=-3和axis=0的意思是一样的,对于有3层轴的数组来说的话。
收起阅读 »
a=np.array([[[1,2],[3,4]],[[11,12],[13,14]]])
a
array([[[ 1, 2],
[ 3, 4]],
[[11, 12],
[13, 14]]])
a有3个中括号,那么就有3条轴,从0开始到2,分别是axis=0,1,2
那么我要对a进行求和,分别用axis=0,1,2进行运行。
a.sum(axis=0)得到:
array([[12, 14],意思是去掉一个中括号,然后运行。
[16, 18]])
同理:
a.sum(axis=1)对a去掉2个中括号,然后运行。
得到:
array([[ 4, 6],那么对a.sum(axis=2)的结果呢?读者可以自己上机去尝试吧。
[24, 26]])
而轴的负数,axis=-3和axis=0的意思是一样的,对于有3层轴的数组来说的话。
a.sum(axis=-3)
array([[12, 14],
[16, 18]])
收起阅读 »
np.nonzero()的用法【numpy小白】
numpy函数返回非零元素的位置。
返回值为元组, 两个值分别为两个维度, 包含了相应维度上非零元素的目录值。
比如:
返回的是:
要获取里面的值,需要用 n1.nonzero()[0] 来获取。
原创文章
转载请注明出处:
http://30daydo.com/article/466
收起阅读 »
返回值为元组, 两个值分别为两个维度, 包含了相应维度上非零元素的目录值。
比如:
n1=np.array([0,1,0,0,0,0,1,0,0,0,0,0,0,1])
n1.nonzero()
返回的是:
(array([ 1, 6, 13], dtype=int64),)
注意上面是一个yu元组要获取里面的值,需要用 n1.nonzero()[0] 来获取。
原创文章
转载请注明出处:
http://30daydo.com/article/466
收起阅读 »
ndarray和array的区别【numpy小白】
在numpy中,np.array()是一个函数,用法:
原创文章
转载请注明出处:
http://30daydo.com/article/465
收起阅读 »
np.array([1,2,3,4])
上面代码创建了一个对象,这个对象就是ndarray。 所以ndarray是一个类对象象,而array是一个方法。原创文章
转载请注明出处:
http://30daydo.com/article/465
收起阅读 »
Fielddata is disabled on text fields by default. Set fielddata=true
在ES5.X之后,默认的text类型无法做聚合操作。 比如官方的例子:
创建数据如下:
那么运行聚合操作会报错,官方的说法是text是会分词,如果text中一个文本为New York,那么就会被分成2个桶,一个New桶,一个York桶,那么显然不能聚合操作,要么你把该类型替换成keyword类型,因为keyword类型是不会分词的,可以用来做聚合操作。
如果实在是想要用text做聚合操作,那么可以手工修改其mapping
修改完成后就可以正常聚合操作了。
收起阅读 »
{ "size":0,
"aggs":
{
"color":
{
"terms":{
"field":"color"
}
}
}
}
创建数据如下:
curl -X POST "10.18.6.102:9200/cars/transactions/_bulk" -H 'Content-Type: application/json' -d'
{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }
'
那么运行聚合操作会报错,官方的说法是text是会分词,如果text中一个文本为New York,那么就会被分成2个桶,一个New桶,一个York桶,那么显然不能聚合操作,要么你把该类型替换成keyword类型,因为keyword类型是不会分词的,可以用来做聚合操作。
如果实在是想要用text做聚合操作,那么可以手工修改其mapping
PUT my_index/_mapping/_doc上面语句可以在已有d的mapping上修改。
{
"properties": {
"my_field": {
"type": "text",
"fielddata": true
}
}
}
修改完成后就可以正常聚合操作了。
收起阅读 »
ubuntu/linux shell根据进程名杀死进程 一句搞定
ps -ef | grep "进程名" | grep -v grep | cut -c 10-16 | xargs kill -9
比如我要杀死python的进程,就使用
ps -ef | grep "python" | grep -v grep | cut -c 10-16 | xargs kill -9
来使用。
grep -v grep 因为 ps 会把grep python这个进程也打印出来,所以-v 是反转的意思,不匹配的才打印出来,然后cut 是找出10到16位的字符,这里需要大家根据自己的用户名来调整。
一般ps -ef输出是 前面 用户名,然后空格, 接着是进程号。 如果你的用户名很长,可以调整10-16的位置来适应。
后面就是把进程号传递给kill作为参数,-9 是强制杀死。
收起阅读 »
python不支持多重继承中的重复继承
代码如下:
运行代码会直接报错:
收起阅读 »
class First(object):
def __init__(self):
print("first")
class Second(First):
def __init__(self):
print("second")
class Third(First,Second):
def __init__(self):
print("third")
运行代码会直接报错:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-6-c90f7b77d3e0> in <module>()
7 print("second")
8
----> 9 class Third(First,Second):
10 def __init__(self):
11 print("third")
TypeError: Cannot create a consistent method resolution order (MRO) for bases First, Second
收起阅读 »
gevent异步 入门教程(入坑)
code1
上面的异步代码不起作用,因为requests阻塞了,所以用的时间和顺序执行的时间一样.
或者用以下代码替代:
把访问网络部分使用sleep替代,那么最后的运行时间是2+2 =4秒,并不是2秒,那么要怎样才是2秒呢,需要改成以下的代码:
使用gevent.sleep()
这个函数才可以达到目的. 收起阅读 »
import time
import gevent
import requests
def foo():
print('Running in foo')
r=requests.get('http://30daydo.com')
print(r.status_code)
print('Explicit context switch to foo again')
def bar():
print('Explicit context to bar')
r=requests.get('http://www.qq.com') #
print(r.status_code)
print('Implicit context switch back to bar')
start=time.time()
gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
])
print('time used {}'.format(time.time()-start))
上面的异步代码不起作用,因为requests阻塞了,所以用的时间和顺序执行的时间一样.
或者用以下代码替代:
import time
import gevent
import requests
def foo():
print('Running in foo')
time.sleep(2) # 这样子不起作用
print('Explicit context switch to foo again')
def bar():
print('Explicit context to bar')
time.sleep(2)
print('Implicit context switch back to bar')
start=time.time()
gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
])
print('time used {}'.format(time.time()-start))
把访问网络部分使用sleep替代,那么最后的运行时间是2+2 =4秒,并不是2秒,那么要怎样才是2秒呢,需要改成以下的代码:
import time
import gevent
import requests
def foo():
print('Running in foo')
gevent.sleep(2) # 通过它各自yield向对方
print('Explicit context switch to foo again')
def bar():
print('Explicit context to bar')
gevent.sleep(2)
print('Implicit context switch back to bar')
start=time.time()
gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),
])
print('time used {}'.format(time.time()-start))
使用gevent.sleep()
这个函数才可以达到目的. 收起阅读 »
最流行的版本控制软件:git 个人笔记
收起阅读 »
最流行的版本控制软件:git
========================
git已经是当前最流行的版本控制软件之一了。全世界的程序员都在使用它。它出自linus大神之手,现在被用于内
核的版本控制。在最流行的代码托管软件github,你几乎可以找到所有开源项目的代码。
版块控制软件:我需要吗?
-----------------------
的确对于许多人——尤其是非程序员,他们可能不会想到已经出现了专门的版本控制的软件。但其实多人对版本控
制其实都有类似的需求,举个例子,Tom是社团的秘书处成员,他们经常需要做的事情就是写活动文档,然后不停地
改改到大家都觉得可以了。
不幸运的话,Tom可能有个文件夹叫“openSUSE活动策划",里面有这样的一堆文件”openSUSE活动策划", "活动策
划1", "活动策划2", "活动策划3", "活动策划4" ... "活动策划20" (可怜的Tom,一份文档改了不少于20次)
这种作法很有效,因为我们可能发现第5个版本的策划有问题,我们准备在第3个版本上面重新来过。但是也看到,
这个作法有些很丑陋的地方:一份文件,我们留了20个备份,而且还要注意文件名。
如果可以这样就好了:文件夹上只有一个“openSUSE活动策划",但当我需要第5个版本的时候,我来一个”给我还
原到第5个版本吧!“,然后这时候我们打开这个文件,它就是第5个版本的了。类似的,我们可以取出任意的版本
。
这就是版本控制。这种事情在程序里面发生的太多了,于是出现了各种版本控制软件。事实上,有些项目已经发展
到第1000+甚至更高的版本数了……
单线的工作流
------------
我们可以把我们的一个项目想象为一个仓库,然后我们可以把我们的东西塞进仓库里面,也可以把想要的东西拿出
来。而git则是仓库的管理员。下面是一个例子,希望有一个直观的印象,不求完全的理解和掌握。
```bash
mkdir myproject // 假设myproject是工作目录
cd myproject
git init // git <- (init) ,告诉仓库管理员,在当前目录初始化
echo 'Eat the banana' > file // 编辑了一个文件
git add file // 加入仓库
git commit -m 'add first file' // 提交更改
echo 'Eat the apply' > file // 修改了这个文件
git add file // 加入仓库
git commit -m 'update first file' // 再提交更改
```
这时候我们就有两个commit了,我们来看看工作日志:
```bash
git log
# 以下是输出
# commit ac1371173b4e630ddaebda3f9f5d948b36146c07
# Author: Norman Mo <LTaoist@@@>
# Date: Thu Jun 27 21:59:10 2013 +0800
#
# update first file
#
# commit 3c43cc913454f92bb4b80c56ba45e4ffaf556fc0
# Author: Norman Mo <LTaoist6@@@@>
# Date: Thu Jun 27 21:58:48 2013 +0800
#
# add first file
```
看到了,我们提交了两次。我们来看看现在file里面是什么:
```bash
cat file # 显然输出是 'Eat the apply'
# 现在,我们来拿回第一个版本的file文件
git checkout 3c43cc913454f92bb4b80c56ba45e4ffaf556fc0 -- file
cat file # 这时候就是eat banana了
```
这种工作的方式是单人使用最常见的方式,写一点代码,提交一下到仓库里面。写一点,提交到仓库里面。然后出
问题的时候就回退过去。git非常强大,基本上你想到的他都可以做到,提交到仓库的数据基本不会丢失,像时间机
器一样控制着代码。
多人协作
--------
git非常强大,上面只是一个功能。考虑Tom的秘书处有两个人,他们在同时写。其中Tom写前6章,他的同伴写第7~
12章。
这时候可以考虑用这种工作的方式:设立一个公共的仓库。Tom维护自己的版本,他的同伴维护自己的版本。然后大
家定期把代码合并到公共仓库上面,然后定期把新的版本取回来合并再提交到公共仓库。
如果他们用纯文本,得益于一些文本分析的方法,几乎不需要校对就可以做到。
```
git commit -m 'finish ch5' // 假设此时Tom写完了第5章
git push // Tom将代码推送到远程仓库
```
```
git commit -m 'finish ch11' // 假设此时Tom的同伴完成了第11章
git pull // pull会将最新版本拉下来,合并,然后推送到远程仓库
```
实际上工作中,为了不混淆,会新开一个分支来开发新的特性,然后对分支进行合并。
代码自动发布
-----------
另一个很强大的功能是可以实现代码的自动发布。事实上,很多云就有使用这个。具体来说,利用git的hooks,当
服务器收到一个push,服务器可以自动运行一些脚本。也可以在客户端使用hooks,当客户端准备push的时候,客户
端先运行一些脚本。
例如,我们希望在每次服务器收到push以后,杀死全部的 `p` 进程,然后重开 `p` 进程。我们可以修改 `hooks/
post-receive` :
```
echo "Killing all p process..."
killall -9 p
echo "Restart p process..."
p
```
更多更多更多……
---------------
这份教程就到这里了,更多的自己马上动手去试试吧!
在openSUSE的安装方法:
```
sudo zypper in git
```
默认应该就装了。
一般linux命令查看帮助都是 `--help` 选项:
```
git --help
```
此外,对一个子命令也是有help看的:
```
git init --help
```
这里有一个交互教程,在浏览器上面跑的模拟git的运行的,有兴趣的试试:
<http://try.github.io/>
github的help文档写得很不错,推荐一下:
<https://help.github.com/>
书籍有个远近闻名的《Pro Git》,而且有中文版的,虽然我认为这本书太厚了。。。但似乎就这么一本书……
<http://git-scm.com/book/zh>
国内有个gitcafe,也是做git托管的,他们也有整理一份help:
<https://gitcafe.com/GitCafe/Help>
记得,上面只是一个演示,多试试push,多尝试。有一天你会喜欢用这个有效的工具的。
很有用!!!
修改win7 hosts文件IP域名映射问题的一个坑
因为讨厌一些网站的弹窗,还有想要高效地学习,把一些娱乐网站给屏蔽了,比如QQ。
所以在hosts文件中添加了如下内容:
路径:C:\Windows\System32\drivers\etc
结果发现一直无法生效。
后来在ping下发现,ping qq.com 返回的是127.0.0.1是生效的。
但是ping www.qq.com是能够ping到腾讯的服务器的,原来问题在于,你在浏览器输入qq.com,浏览器默认帮你加了www.前缀。
所以你要hosts文件生效,就需要把www.的前缀也加上去。
然后重新刷新下DNS就可以了
ipconfig /flushdns
还有就是,如果你用了代理软件,比如lantern之类的,这个hosts文件也不会起作用。 收起阅读 »
所以在hosts文件中添加了如下内容:
路径:C:\Windows\System32\drivers\etc
127.0.0.1 qq.com
127.0.0.1 cnbeta.com
10.4.16.75 windows10.microdone.cn
50.112.79.106 mukodik
0.0.0.0 account.jetbrains.com
结果发现一直无法生效。
后来在ping下发现,ping qq.com 返回的是127.0.0.1是生效的。
但是ping www.qq.com是能够ping到腾讯的服务器的,原来问题在于,你在浏览器输入qq.com,浏览器默认帮你加了www.前缀。
所以你要hosts文件生效,就需要把www.的前缀也加上去。
然后重新刷新下DNS就可以了
ipconfig /flushdns
还有就是,如果你用了代理软件,比如lantern之类的,这个hosts文件也不会起作用。 收起阅读 »
python操作kafka报错:return '<SimpleProducer batch=%s>' % self.async
使用的Anaconda的python3.7版本,发现使用kafka的库连接时报错,错误信息如下:
因为py3.7里面async已经变成了关键字。所以导致了不兼容。
解决办法:
使用最新的kafka版本,但是pyPI上的kafka还没有被替换成最新的,可以使用下面的方法升级kafka python
pip install kafka-python
然后问题就解决了。 收起阅读 »
C:\ProgramData\Anaconda3\python.exe C:/git/base_function/kafka_usage.py
Traceback (most recent call last):
File "C:/git/base_function/kafka_usage.py", line 6, in <module>
from kafka import KafkaProducer
File "C:\ProgramData\Anaconda3\lib\site-packages\kafka\__init__.py", line 23, in <module>
from kafka.producer import KafkaProducer
File "C:\ProgramData\Anaconda3\lib\site-packages\kafka\producer\__init__.py", line 4, in <module>
from .simple import SimpleProducer
File "C:\ProgramData\Anaconda3\lib\site-packages\kafka\producer\simple.py", line 54
return '<SimpleProducer batch=%s>' % self.async
^
SyntaxError: invalid syntax
因为py3.7里面async已经变成了关键字。所以导致了不兼容。
解决办法:
使用最新的kafka版本,但是pyPI上的kafka还没有被替换成最新的,可以使用下面的方法升级kafka python
pip install kafka-python
然后问题就解决了。 收起阅读 »
【可转债数据】发行速度趋势
随着年后股市一波流,每天涨涨涨,发行可转债的数量也越来越多。
用pyecharts做了一张趋势图,可以显然易见地窥探目前可转债的发行速度。
实现代码也很简单:
(核心部分)
2018年初的时候只有36只可转债,到了今天(2019-04-08),已经有138只,扩容了4倍有多。
不过个人认为随着股市深入回调(具体什么时候我也不知道,小散就不要预测指数跳大神了),发行速度会因为面临破发再次减缓。
上图中曲线较为较为平滑的部分就是股市回调阶段,可转债上市就大面积破发。
目前以较大的斜率保持上升,而且目前上市价格都是20%以上。离破发还很远。
但是不能掉以轻心,一旦行情断崖式暴跌,高价转债会面临动辄超过10个点的跌幅。
所以现阶段还是要远离高价转债。当然艺高人胆大者或者套利纯熟者就无视吧,每个人都有自己模式内的操作方法
上述数据小编会每周更新一次。 收起阅读 »
用pyecharts做了一张趋势图,可以显然易见地窥探目前可转债的发行速度。
实现代码也很简单:
(核心部分)
line=Line()
line.add('可转债个数趋势',b,v,mark_line=["average"], mark_point=["max", "min"])
2018年初的时候只有36只可转债,到了今天(2019-04-08),已经有138只,扩容了4倍有多。
不过个人认为随着股市深入回调(具体什么时候我也不知道,小散就不要预测指数跳大神了),发行速度会因为面临破发再次减缓。
上图中曲线较为较为平滑的部分就是股市回调阶段,可转债上市就大面积破发。
目前以较大的斜率保持上升,而且目前上市价格都是20%以上。离破发还很远。
但是不能掉以轻心,一旦行情断崖式暴跌,高价转债会面临动辄超过10个点的跌幅。
所以现阶段还是要远离高价转债。当然艺高人胆大者或者套利纯熟者就无视吧,每个人都有自己模式内的操作方法
上述数据小编会每周更新一次。 收起阅读 »
numpy datetime转为date,pandas的日期类型转为python的daetime
dataframe的数据格式是这样子的:
info看一下里面的数据类型:
日期 307 non-null datetime64[ns]
然后转为list看看:
a=list(df['日期'].values)
如果使用上面的方法,返回的是这样的数据:
如何转化为python的daetime格式呢?
可以使用内置的:s.dt.to_pydatetime()
s为df的一列,也就是series数据格式
为了不想要小时,分钟,秒的数据,可以清洗一下:
b=[i.strftime('%Y-%m-%d') for i in b]
得到:
收起阅读 »
info看一下里面的数据类型:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307 entries, 0 to 306
Data columns (total 7 columns):
日期 307 non-null datetime64[ns]
指数 307 non-null float64
成交额(亿元) 307 non-null float64
涨跌 307 non-null float64
涨跌额 307 non-null float64
转债数目 307 non-null float64
剩余规模 307 non-null float64
dtypes: datetime64[ns](1), float64(6)
memory usage: 16.9 KB
日期 307 non-null datetime64[ns]
然后转为list看看:
a=list(df['日期'].values)
如果使用上面的方法,返回的是这样的数据:
[numpy.datetime64('2017-12-29T00:00:00.000000000'),
numpy.datetime64('2018-01-02T00:00:00.000000000'),
numpy.datetime64('2018-01-03T00:00:00.000000000'),
numpy.datetime64('2018-01-04T00:00:00.000000000'),
numpy.datetime64('2018-01-05T00:00:00.000000000'),
numpy.datetime64('2018-01-08T00:00:00.000000000'),
numpy.datetime64('2018-01-09T00:00:00.000000000'),
numpy.datetime64('2018-01-10T00:00:00.000000000'),
numpy.datetime64('2018-01-11T00:00:00.000000000'),
numpy.datetime64('2018-01-12T00:00:00.000000000'),
numpy.datetime64('2018-01-15T00:00:00.000000000'),
numpy.datetime64('2018-01-16T00:00:00.000000000'),
numpy.datetime64('2018-01-17T00:00:00.000000000'),
如何转化为python的daetime格式呢?
可以使用内置的:s.dt.to_pydatetime()
s为df的一列,也就是series数据格式
b=list(df['日期'].dt.to_pydatetime())
得到的是[datetime.datetime(2017, 12, 29, 0, 0),
datetime.datetime(2018, 1, 2, 0, 0),
datetime.datetime(2018, 1, 3, 0, 0),
datetime.datetime(2018, 1, 4, 0, 0),
datetime.datetime(2018, 1, 5, 0, 0),
datetime.datetime(2018, 1, 8, 0, 0),
datetime.datetime(2018, 1, 9, 0, 0),
datetime.datetime(2018, 1, 10, 0, 0),
datetime.datetime(2018, 1, 11, 0, 0),
datetime.datetime(2018, 1, 12, 0, 0),
datetime.datetime(2018, 1, 15, 0, 0)
为了不想要小时,分钟,秒的数据,可以清洗一下:
b=[i.strftime('%Y-%m-%d') for i in b]
得到:
['2017-12-29',
'2018-01-02',
'2018-01-03',
'2018-01-04',
'2018-01-05',
'2018-01-08',
'2018-01-09',
'2018-01-10',
'2018-01-11',
'2018-01-12',
'2018-01-15',
'2018-01-16',
'2018-01-17',]
收起阅读 »
python datetime模块:timestamp转为本地时间(东八区)
一般timestamp时间戳格式为10位,如果是13位,则需要除以1000,
以
1554369904000
为例,计算这个数字的本地时间。
如果使用
t=1554369904000
datetime.datetime.fromtimestamp(t/1000)
得到的是:
(2019, 4, 4, 17, 25, 4)
然而这个时间并不是我想要的,和我想要的时间差了8个时区。
那么可以使用
datetime.datetime.utcfromtimestamp(t/1000)
这个返回的就是我想要的时间了
(2019, 4, 4, 9, 25, 4)
引用:
收起阅读 »
以
1554369904000
为例,计算这个数字的本地时间。
如果使用
t=1554369904000
datetime.datetime.fromtimestamp(t/1000)
得到的是:
(2019, 4, 4, 17, 25, 4)
然而这个时间并不是我想要的,和我想要的时间差了8个时区。
那么可以使用
datetime.datetime.utcfromtimestamp(t/1000)
这个返回的就是我想要的时间了
(2019, 4, 4, 9, 25, 4)
引用:
timestamp转换为datetime
要把timestamp转换为datetime,使用datetime提供的fromtimestamp()方法:
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00
注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。
本地时间是指当前操作系统设定的时区。例如北京时区是东8区,则本地时间:
2015-04-19 12:20:00
实际上就是UTC+8:00时区的时间:
2015-04-19 12:20:00 UTC+8:00
而此刻的格林威治标准时间与北京时间差了8小时,也就是UTC+0:00时区的时间应该是:
2015-04-19 04:20:00 UTC+0:00
timestamp也可以直接被转换到UTC标准时区的时间:
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00
收起阅读 »
【python】pymongo find_one_and_update的用法
原生的mongo语句是这样的:
转换成python pymongo是这样的:
上面的语句的意思是:
找到_id 为userid的值得文档,然后把该文档中的seq的值+1,然后返回seq的数据,不显示_id列
最后返回的数据是这样的:
{'seq': 2}
注意
findOneAndUpdate
是获取mongo文档中第一条满足条件的数据并做修改。该函数是线程安全的。意思就是在多个线程中操作,不会对同一条数据进行获取修改。
也就是该操作是原子操作。
ReturnDocument 引用的库
class pymongo.collection.ReturnDocument
在开头 from pymongo.collection import ReturnDocument
原创文章
转载请注明出处:
http://30daydo.com/article/445 收起阅读 »
db.collection.findOneAndUpdate(
<filter>,
<update>,
{
projection: <document>,
sort: <document>,
maxTimeMS: <number>,
upsert: <boolean>,
returnNewDocument: <boolean>,
collation: <document>,
arrayFilters: [ <filterdocument1>, ... ]
}
)
转换成python pymongo是这样的:
>>> db.example.find_one_and_update(
... {'_id': 'userid'},
... {'$inc': {'seq': 1}},
... projection={'seq': True, '_id': False},
... return_document=ReturnDocument.AFTER)
上面的语句的意思是:
找到_id 为userid的值得文档,然后把该文档中的seq的值+1,然后返回seq的数据,不显示_id列
最后返回的数据是这样的:
{'seq': 2}
注意
findOneAndUpdate
是获取mongo文档中第一条满足条件的数据并做修改。该函数是线程安全的。意思就是在多个线程中操作,不会对同一条数据进行获取修改。
也就是该操作是原子操作。
ReturnDocument 引用的库
class pymongo.collection.ReturnDocument
在开头 from pymongo.collection import ReturnDocument
原创文章
转载请注明出处:
http://30daydo.com/article/445 收起阅读 »
scrapy-redis使用redis集群进行分布式爬取
正常情况单机的redis可以满足scrapy-redis进行分布式爬取,可是如果单机的redis的内存过小,很容易导致系统内存不够,读取数据缓慢,如果使用docker运行redis,更加可能导致redis的容器的进程被杀掉。(笔者就曾经经常遇到这种情况,机器内存才8GB,上面跑了N个docker容器,一旦内存吃紧,某个容器就被kill掉,导致爬虫经常出问题)。
使用redis集群可以增加redis集体内存,防止出现上面的情况。
scrapy redis-cluster很简单,只需要按照以下步骤:
1. 按照库
pip install scrapy-redis-cluster
2. 修改settings文件
然后就可以运行啦。 收起阅读 »
使用redis集群可以增加redis集体内存,防止出现上面的情况。
scrapy redis-cluster很简单,只需要按照以下步骤:
1. 按照库
pip install scrapy-redis-cluster
2. 修改settings文件
# Redis集群地址
REDIS_MASTER_NODES = [
{"host": "192.168.10.233", "port": "30001"},
{"host": "192.168.10.234", "port": "30002"},
{"host": "192.168.10.235", "port": "30003"},
]
# 使用的哈希函数数,默认为6
BLOOMFILTER_HASH_NUMBER = 6
# Bloomfilter使用的Redis内存位,30表示2 ^ 30 = 128MB,默认为22 (1MB 可去重130W URL)
BLOOMFILTER_BIT = 22
# 不清空redis队列
SCHEDULER_PERSIST = True
# 调度队列
SCHEDULER = "scrapy_redis_cluster.scheduler.Scheduler"
# 去重
DUPEFILTER_CLASS = "scrapy_redis_cluster.dupefilter.RFPDupeFilter"
# queue
SCHEDULER_QUEUE_CLASS = 'scrapy_redis_cluster.queue.PriorityQueue'
然后就可以运行啦。 收起阅读 »
【Dataframe warning】Try using .loc[row_indexer,col_indexer] = value instead
使用dataframe直接赋值操作时
df['当前日期'] = datetime.date.today()
会出现下面的警告信息
Try using .loc[row_indexer,col_indexer] = value instead
虽然得到的最终结果是正常的,可是为什么会出现上面的警告呢?
因为上面的操作如果稍微复杂点,那么就可能导致赋值失败。 因为中间会产生一个切片的临时副本。
比如:
如果想把A列中大于5的数换成100,如何操作 ?
df[df.A > 5]['A'] = 1000
上面的这个表达式是不会生效的。
要生效,需要写成以下:
df.loc[df.A > 5, 'A'] = 1000
为什么呢?
因为df[df.A]得到是一个临时切片结果,等于一个中间变量,然后在这个中间变量上的A列上做赋值操作,但是最原始的df却没有被改变。
或者你可以这样写
df=df[df.A>5]
df.A=1000
收起阅读 »
df['当前日期'] = datetime.date.today()
会出现下面的警告信息
Try using .loc[row_indexer,col_indexer] = value instead
虽然得到的最终结果是正常的,可是为什么会出现上面的警告呢?
因为上面的操作如果稍微复杂点,那么就可能导致赋值失败。 因为中间会产生一个切片的临时副本。
比如:
df
A B C D E
0 5 0 3 3 7
1 9 3 5 2 4
2 7 6 8 8 1
如果想把A列中大于5的数换成100,如何操作 ?
A B C D E
0 5 0 3 3 7
1 1000 3 5 2 4
2 1000 6 8 8 1
df[df.A > 5]['A'] = 1000
上面的这个表达式是不会生效的。
要生效,需要写成以下:
df.loc[df.A > 5, 'A'] = 1000
为什么呢?
因为df[df.A]得到是一个临时切片结果,等于一个中间变量,然后在这个中间变量上的A列上做赋值操作,但是最原始的df却没有被改变。
或者你可以这样写
df=df[df.A>5]
df.A=1000
收起阅读 »