python

python

conda无法在win10下用命令行切换虚拟环境

python李魔佛 发表了文章 • 0 个评论 • 34 次浏览 • 2019-06-11 10:04 • 来自相关话题

虚拟环境已经安装好了
然后在PowerShell下运行activate py2,没有任何反应。(powershell是win7后面系统的增强命令行)
后来使用系统原始的cmd命令行,在运行里面敲入cmd,然后重新执行activate py2,问题得到解决了。
原因是兼容问题。 查看全部
虚拟环境已经安装好了
然后在PowerShell下运行activate py2,没有任何反应。(powershell是win7后面系统的增强命令行)
后来使用系统原始的cmd命令行,在运行里面敲入cmd,然后重新执行activate py2,问题得到解决了。
原因是兼容问题。

requests直接post图片文件

python爬虫李魔佛 发表了文章 • 0 个评论 • 100 次浏览 • 2019-05-17 16:32 • 来自相关话题

代码如下:
file_path=r'9927_15562445086485238.png'
file=open(file_path, 'rb').read()
r=requests.post(url=code_url,data=file)
print(r.text) 查看全部
代码如下:
    file_path=r'9927_15562445086485238.png'
file=open(file_path, 'rb').read()
r=requests.post(url=code_url,data=file)
print(r.text)

python的mixin类

python李魔佛 发表了文章 • 0 个评论 • 104 次浏览 • 2019-05-16 16:30 • 来自相关话题

A mixin is a limited form of multiple inheritance.
 
maxin类似多重继承的一种限制形式:
 关于Python的Mixin模式

像C或C++这类语言都支持多重继承,一个子类可以有多个父类,这样的设计常被人诟病。因为继承应该是个”is-a”关系。比如轿车类继承交通工具类,因为轿车是一个(“is-a”)交通工具。一个物品不可能是多种不同的东西,因此就不应该存在多重继承。不过有没有这种情况,一个类的确是需要继承多个类呢?

答案是有,我们还是拿交通工具来举例子,民航飞机是一种交通工具,对于土豪们来说直升机也是一种交通工具。对于这两种交通工具,它们都有一个功能是飞行,但是轿车没有。所以,我们不可能将飞行功能写在交通工具这个父类中。但是如果民航飞机和直升机都各自写自己的飞行方法,又违背了代码尽可能重用的原则(如果以后飞行工具越来越多,那会出现许多重复代码)。怎么办,那就只好让这两种飞机同时继承交通工具以及飞行器两个父类,这样就出现了多重继承。这时又违背了继承必须是”is-a”关系。这个难题该怎么破?

不同的语言给出了不同的方法,让我们先来看下Java。Java提供了接口interface功能,来实现多重继承:public abstract class Vehicle {
}

public interface Flyable {
public void fly();
}

public class FlyableImpl implements Flyable {
public void fly() {
System.out.println("I am flying");
}
}

public class Airplane extends Vehicle implements Flyable {
private flyable;

public Airplane() {
flyable = new FlyableImpl();
}

public void fly() {
flyable.fly();
}
}

现在我们的飞机同时具有了交通工具及飞行器两种属性,而且我们不需要重写飞行器中的飞行方法,同时我们没有破坏单一继承的原则。飞机就是一种交通工具,可飞行的能力是是飞机的属性,通过继承接口来获取。

回到主题,Python语言可没有接口功能,但是它可以多重继承。那Python是不是就该用多重继承来实现呢?是,也不是。说是,因为从语法上看,的确是通过多重继承实现的。说不是,因为它的继承依然遵守”is-a”关系,从含义上看依然遵循单继承的原则。这个怎么理解呢?我们还是看例子吧。
class Vehicle(object):
pass

class PlaneMixin(object):
def fly(self):
print 'I am flying'

class Airplane(Vehicle, PlaneMixin):
pass

可以看到,上面的Airplane类实现了多继承,不过它继承的第二个类我们起名为PlaneMixin,而不是Plane,这个并不影响功能,但是会告诉后来读代码的人,这个类是一个Mixin类。所以从含义上理解,Airplane只是一个Vehicle,不是一个Plane。这个Mixin,表示混入(mix-in),它告诉别人,这个类是作为功能添加到子类中,而不是作为父类,它的作用同Java中的接口。

使用Mixin类实现多重继承要非常小心
首先它必须表示某一种功能,而不是某个物品,如同Java中的Runnable,Callable等
 
其次它必须责任单一,如果有多个功能,那就写多个Mixin类然后,它不依赖于子类的实现最后,子类即便没有继承这个Mixin类,也照样可以工作,就是缺少了某个功能。(比如飞机照样可以载客,就是不能飞了^_^) 查看全部
A mixin is a limited form of multiple inheritance.
 
maxin类似多重继承的一种限制形式:
 关于Python的Mixin模式

像C或C++这类语言都支持多重继承,一个子类可以有多个父类,这样的设计常被人诟病。因为继承应该是个”is-a”关系。比如轿车类继承交通工具类,因为轿车是一个(“is-a”)交通工具。一个物品不可能是多种不同的东西,因此就不应该存在多重继承。不过有没有这种情况,一个类的确是需要继承多个类呢?

答案是有,我们还是拿交通工具来举例子,民航飞机是一种交通工具,对于土豪们来说直升机也是一种交通工具。对于这两种交通工具,它们都有一个功能是飞行,但是轿车没有。所以,我们不可能将飞行功能写在交通工具这个父类中。但是如果民航飞机和直升机都各自写自己的飞行方法,又违背了代码尽可能重用的原则(如果以后飞行工具越来越多,那会出现许多重复代码)。怎么办,那就只好让这两种飞机同时继承交通工具以及飞行器两个父类,这样就出现了多重继承。这时又违背了继承必须是”is-a”关系。这个难题该怎么破?

不同的语言给出了不同的方法,让我们先来看下Java。Java提供了接口interface功能,来实现多重继承:
public abstract class Vehicle {
}

public interface Flyable {
public void fly();
}

public class FlyableImpl implements Flyable {
public void fly() {
System.out.println("I am flying");
}
}

public class Airplane extends Vehicle implements Flyable {
private flyable;

public Airplane() {
flyable = new FlyableImpl();
}

public void fly() {
flyable.fly();
}
}


现在我们的飞机同时具有了交通工具及飞行器两种属性,而且我们不需要重写飞行器中的飞行方法,同时我们没有破坏单一继承的原则。飞机就是一种交通工具,可飞行的能力是是飞机的属性,通过继承接口来获取。

回到主题,Python语言可没有接口功能,但是它可以多重继承。那Python是不是就该用多重继承来实现呢?是,也不是。说是,因为从语法上看,的确是通过多重继承实现的。说不是,因为它的继承依然遵守”is-a”关系,从含义上看依然遵循单继承的原则。这个怎么理解呢?我们还是看例子吧。
class Vehicle(object):
pass

class PlaneMixin(object):
def fly(self):
print 'I am flying'

class Airplane(Vehicle, PlaneMixin):
pass


可以看到,上面的Airplane类实现了多继承,不过它继承的第二个类我们起名为PlaneMixin,而不是Plane,这个并不影响功能,但是会告诉后来读代码的人,这个类是一个Mixin类。所以从含义上理解,Airplane只是一个Vehicle,不是一个Plane。这个Mixin,表示混入(mix-in),它告诉别人,这个类是作为功能添加到子类中,而不是作为父类,它的作用同Java中的接口。

使用Mixin类实现多重继承要非常小心
  • 首先它必须表示某一种功能,而不是某个物品,如同Java中的Runnable,Callable等

 
  • 其次它必须责任单一,如果有多个功能,那就写多个Mixin类
  • 然后,它不依赖于子类的实现
  • 最后,子类即便没有继承这个Mixin类,也照样可以工作,就是缺少了某个功能。(比如飞机照样可以载客,就是不能飞了^_^)

截止今天(2019-05-14)银行股今年的涨幅排名

股票李魔佛 发表了文章 • 0 个评论 • 138 次浏览 • 2019-05-14 23:59 • 来自相关话题

今年涨幅最少的是农业银行,最多的是新股 西安银行。 ticker secShortName secFullName y_chgPct
31 601288 农业银行 中国农业银行股份有限公司 -0.341178
11 600015 华夏银行 华夏银行股份有限公司 1.856174
45 601988 中国银行 中国银行股份有限公司 2.248533
32 601328 交通银行 交通银行股份有限公司 3.532657
30 601229 上海银行 上海银行股份有限公司 3.725781
35 601398 工商银行 中国工商银行股份有限公司 4.771403
40 601818 光大银行 中国光大银行股份有限公司 5.643119
27 601169 北京银行 北京银行股份有限公司 6.205580
14 600016 民生银行 中国民生银行股份有限公司 7.092815
5 002936 郑州银行 郑州银行股份有限公司 7.551112
49 601998 中信银行 中信银行股份有限公司 8.181956
43 601939 建设银行 中国建设银行股份有限公司 9.402651
41 601838 成都银行 成都银行股份有限公司 9.424554
52 603323 苏农银行 江苏苏州农村商业银行股份有限公司 12.375732
20 600926 杭州银行 杭州银行股份有限公司 12.933645
8 600000 浦发银行 上海浦东发展银行股份有限公司 14.752244
39 601577 长沙银行 长沙银行股份有限公司 14.792683
18 600908 无锡银行 无锡农村商业银行股份有限公司 16.181704
3 002807 江阴银行 江苏江阴农村商业银行股份有限公司 19.274586
48 601997 贵阳银行 贵阳银行股份有限公司 20.489563
4 002839 张家港行 江苏张家港农村商业银行股份有限公司 20.599511
25 601166 兴业银行 兴业银行股份有限公司 21.206503
24 601128 常熟银行 江苏常熟农村商业银行股份有限公司 21.571187
19 600919 江苏银行 江苏银行股份有限公司 23.218299
22 601009 南京银行 南京银行股份有限公司 26.297500
16 600036 招商银行 招商银行股份有限公司 27.518708
0 000001 平安银行 平安银行股份有限公司 31.624747
2 002142 宁波银行 宁波银行股份有限公司 31.729062
6 002948 青岛银行 青岛银行股份有限公司 48.602573
7 002958 青农商行 青岛农村商业银行股份有限公司 108.983776
42 601860 紫金银行 江苏紫金农村商业银行股份有限公司 115.147347
21 600928 西安银行 西安银行股份有限公司 128.496683 查看全部
今年涨幅最少的是农业银行,最多的是新股 西安银行。
	ticker	secShortName	secFullName	y_chgPct
31 601288 农业银行 中国农业银行股份有限公司 -0.341178
11 600015 华夏银行 华夏银行股份有限公司 1.856174
45 601988 中国银行 中国银行股份有限公司 2.248533
32 601328 交通银行 交通银行股份有限公司 3.532657
30 601229 上海银行 上海银行股份有限公司 3.725781
35 601398 工商银行 中国工商银行股份有限公司 4.771403
40 601818 光大银行 中国光大银行股份有限公司 5.643119
27 601169 北京银行 北京银行股份有限公司 6.205580
14 600016 民生银行 中国民生银行股份有限公司 7.092815
5 002936 郑州银行 郑州银行股份有限公司 7.551112
49 601998 中信银行 中信银行股份有限公司 8.181956
43 601939 建设银行 中国建设银行股份有限公司 9.402651
41 601838 成都银行 成都银行股份有限公司 9.424554
52 603323 苏农银行 江苏苏州农村商业银行股份有限公司 12.375732
20 600926 杭州银行 杭州银行股份有限公司 12.933645
8 600000 浦发银行 上海浦东发展银行股份有限公司 14.752244
39 601577 长沙银行 长沙银行股份有限公司 14.792683
18 600908 无锡银行 无锡农村商业银行股份有限公司 16.181704
3 002807 江阴银行 江苏江阴农村商业银行股份有限公司 19.274586
48 601997 贵阳银行 贵阳银行股份有限公司 20.489563
4 002839 张家港行 江苏张家港农村商业银行股份有限公司 20.599511
25 601166 兴业银行 兴业银行股份有限公司 21.206503
24 601128 常熟银行 江苏常熟农村商业银行股份有限公司 21.571187
19 600919 江苏银行 江苏银行股份有限公司 23.218299
22 601009 南京银行 南京银行股份有限公司 26.297500
16 600036 招商银行 招商银行股份有限公司 27.518708
0 000001 平安银行 平安银行股份有限公司 31.624747
2 002142 宁波银行 宁波银行股份有限公司 31.729062
6 002948 青岛银行 青岛银行股份有限公司 48.602573
7 002958 青农商行 青岛农村商业银行股份有限公司 108.983776
42 601860 紫金银行 江苏紫金农村商业银行股份有限公司 115.147347
21 600928 西安银行 西安银行股份有限公司 128.496683

【可转债剩余转股比例数据排序】【2019-05-06】

股票李魔佛 发表了文章 • 0 个评论 • 170 次浏览 • 2019-05-06 15:28 • 来自相关话题

数据如下:










 
剩余的比例越少,上市公司下调转股价的欲望就越少。 也就是会任由可转债在那里晾着,不会积极拉正股。
 
数据定期更新。
 
原创文章,
转载请注明出处:
http://30daydo.com/article/472
  查看全部
数据如下:

剩余比例1.PNG


剩余比例2.PNG

 
剩余的比例越少,上市公司下调转股价的欲望就越少。 也就是会任由可转债在那里晾着,不会积极拉正股。
 
数据定期更新。
 
原创文章,
转载请注明出处:
http://30daydo.com/article/472
 

pycharm debug scrapy 报错 twisted.internet.error.ReactorNotRestartable

python爬虫李魔佛 发表了文章 • 0 个评论 • 272 次浏览 • 2019-04-23 11:35 • 来自相关话题

没发现哪里不妥,以前debug调试scrapy一直没问题。 
后来才发现,
scrapy run的启动文件名不能命令为cmd.py !!!!!
我把scrapy的启动写到cmd.py里面
from scrapy import cmdline cmdline.execute('scrapy crawl xxxx'.split())
 
然后cmd.py和系统某个调试功能的库重名了。 查看全部
没发现哪里不妥,以前debug调试scrapy一直没问题。 
后来才发现,
scrapy run的启动文件名不能命令为cmd.py !!!!!
我把scrapy的启动写到cmd.py里面
from scrapy import cmdline cmdline.execute('scrapy crawl xxxx'.split())
 
然后cmd.py和系统某个调试功能的库重名了。

python不支持多重继承中的重复继承

python李魔佛 发表了文章 • 0 个评论 • 146 次浏览 • 2019-04-18 16:36 • 来自相关话题

代码如下:
class First(object):
def __init__(self):
print("first")

class Second(First):
def __init__(self):
print("second")

class Third(First,Second):
def __init__(self):
print("third")
运行代码会直接报错:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-6-c90f7b77d3e0> in <module>()
7 print("second")
8
----> 9 class Third(First,Second):
10 def __init__(self):
11 print("third")

TypeError: Cannot create a consistent method resolution order (MRO) for bases First, Second
  查看全部
代码如下:
class First(object):
def __init__(self):
print("first")

class Second(First):
def __init__(self):
print("second")

class Third(First,Second):
def __init__(self):
print("third")

运行代码会直接报错:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-6-c90f7b77d3e0> in <module>()
7 print("second")
8
----> 9 class Third(First,Second):
10 def __init__(self):
11 print("third")

TypeError: Cannot create a consistent method resolution order (MRO) for bases First, Second

 

datetime转为date,pandas的日期类型转为python的datime

python李魔佛 发表了文章 • 0 个评论 • 291 次浏览 • 2019-04-08 15:40 • 来自相关话题

dataframe的数据格式是这样子的:





 
info看一下里面的数据类型:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307 entries, 0 to 306
Data columns (total 7 columns):
日期 307 non-null datetime64[ns]
指数 307 non-null float64
成交额(亿元) 307 non-null float64
涨跌 307 non-null float64
涨跌额 307 non-null float64
转债数目 307 non-null float64
剩余规模 307 non-null float64
dtypes: datetime64[ns](1), float64(6)
memory usage: 16.9 KB
日期 307 non-null datetime64[ns]
 
然后转为list看看:
a=list(df['日期'].values)
如果使用上面的方法,返回的是这样的数据:
[numpy.datetime64('2017-12-29T00:00:00.000000000'),
numpy.datetime64('2018-01-02T00:00:00.000000000'),
numpy.datetime64('2018-01-03T00:00:00.000000000'),
numpy.datetime64('2018-01-04T00:00:00.000000000'),
numpy.datetime64('2018-01-05T00:00:00.000000000'),
numpy.datetime64('2018-01-08T00:00:00.000000000'),
numpy.datetime64('2018-01-09T00:00:00.000000000'),
numpy.datetime64('2018-01-10T00:00:00.000000000'),
numpy.datetime64('2018-01-11T00:00:00.000000000'),
numpy.datetime64('2018-01-12T00:00:00.000000000'),
numpy.datetime64('2018-01-15T00:00:00.000000000'),
numpy.datetime64('2018-01-16T00:00:00.000000000'),
numpy.datetime64('2018-01-17T00:00:00.000000000'),
 
如何转化为python的daetime格式呢?
 
可以使用内置的:s.dt.to_pydatetime()
s为df的一列,也就是series数据格式
 
b=list(df['日期'].dt.to_pydatetime())得到的是
[datetime.datetime(2017, 12, 29, 0, 0),
datetime.datetime(2018, 1, 2, 0, 0),
datetime.datetime(2018, 1, 3, 0, 0),
datetime.datetime(2018, 1, 4, 0, 0),
datetime.datetime(2018, 1, 5, 0, 0),
datetime.datetime(2018, 1, 8, 0, 0),
datetime.datetime(2018, 1, 9, 0, 0),
datetime.datetime(2018, 1, 10, 0, 0),
datetime.datetime(2018, 1, 11, 0, 0),
datetime.datetime(2018, 1, 12, 0, 0),
datetime.datetime(2018, 1, 15, 0, 0)
为了不想要小时,分钟,秒的数据,可以清洗一下:
b=[i.strftime('%Y-%m-%d') for i in b]
 
得到:
['2017-12-29',
'2018-01-02',
'2018-01-03',
'2018-01-04',
'2018-01-05',
'2018-01-08',
'2018-01-09',
'2018-01-10',
'2018-01-11',
'2018-01-12',
'2018-01-15',
'2018-01-16',
'2018-01-17', 
  查看全部
dataframe的数据格式是这样子的:

d1.PNG

 
info看一下里面的数据类型:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307 entries, 0 to 306
Data columns (total 7 columns):
日期 307 non-null datetime64[ns]
指数 307 non-null float64
成交额(亿元) 307 non-null float64
涨跌 307 non-null float64
涨跌额 307 non-null float64
转债数目 307 non-null float64
剩余规模 307 non-null float64
dtypes: datetime64[ns](1), float64(6)
memory usage: 16.9 KB

日期 307 non-null datetime64[ns]
 
然后转为list看看:
a=list(df['日期'].values)
如果使用上面的方法,返回的是这样的数据:
[numpy.datetime64('2017-12-29T00:00:00.000000000'),
numpy.datetime64('2018-01-02T00:00:00.000000000'),
numpy.datetime64('2018-01-03T00:00:00.000000000'),
numpy.datetime64('2018-01-04T00:00:00.000000000'),
numpy.datetime64('2018-01-05T00:00:00.000000000'),
numpy.datetime64('2018-01-08T00:00:00.000000000'),
numpy.datetime64('2018-01-09T00:00:00.000000000'),
numpy.datetime64('2018-01-10T00:00:00.000000000'),
numpy.datetime64('2018-01-11T00:00:00.000000000'),
numpy.datetime64('2018-01-12T00:00:00.000000000'),
numpy.datetime64('2018-01-15T00:00:00.000000000'),
numpy.datetime64('2018-01-16T00:00:00.000000000'),
numpy.datetime64('2018-01-17T00:00:00.000000000'),

 
如何转化为python的daetime格式呢?
 
可以使用内置的:s.dt.to_pydatetime()
s为df的一列,也就是series数据格式
 
b=list(df['日期'].dt.to_pydatetime())
得到的是
[datetime.datetime(2017, 12, 29, 0, 0),
datetime.datetime(2018, 1, 2, 0, 0),
datetime.datetime(2018, 1, 3, 0, 0),
datetime.datetime(2018, 1, 4, 0, 0),
datetime.datetime(2018, 1, 5, 0, 0),
datetime.datetime(2018, 1, 8, 0, 0),
datetime.datetime(2018, 1, 9, 0, 0),
datetime.datetime(2018, 1, 10, 0, 0),
datetime.datetime(2018, 1, 11, 0, 0),
datetime.datetime(2018, 1, 12, 0, 0),
datetime.datetime(2018, 1, 15, 0, 0)

为了不想要小时,分钟,秒的数据,可以清洗一下:
b=[i.strftime('%Y-%m-%d') for i in b]
 
得到:
['2017-12-29',
'2018-01-02',
'2018-01-03',
'2018-01-04',
'2018-01-05',
'2018-01-08',
'2018-01-09',
'2018-01-10',
'2018-01-11',
'2018-01-12',
'2018-01-15',
'2018-01-16',
'2018-01-17',
 
 

kindle收不到python推送的附件,但是同邮件的客户端可以。求助。

python李魔佛 回复了问题 • 2 人关注 • 1 个回复 • 174 次浏览 • 2019-04-08 10:03 • 来自相关话题

python datetime模块:timestamp转为本地时间(东八区)

python李魔佛 发表了文章 • 0 个评论 • 199 次浏览 • 2019-04-04 15:15 • 来自相关话题

一般timestamp时间戳格式为10位,如果是13位,则需要除以1000,

1554369904000
为例,计算这个数字的本地时间。
 
如果使用
t=1554369904000
datetime.datetime.fromtimestamp(t/1000)
 
得到的是:
(2019, 4, 4, 17, 25, 4)
 
然而这个时间并不是我想要的,和我想要的时间差了8个时区。
 
那么可以使用
datetime.datetime.utcfromtimestamp(t/1000)
这个返回的就是我想要的时间了
(2019, 4, 4, 9, 25, 4)
 
 
引用:
timestamp转换为datetime
要把timestamp转换为datetime,使用datetime提供的fromtimestamp()方法:

>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00
注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。

本地时间是指当前操作系统设定的时区。例如北京时区是东8区,则本地时间:

2015-04-19 12:20:00
实际上就是UTC+8:00时区的时间:

2015-04-19 12:20:00 UTC+8:00
而此刻的格林威治标准时间与北京时间差了8小时,也就是UTC+0:00时区的时间应该是:

2015-04-19 04:20:00 UTC+0:00
timestamp也可以直接被转换到UTC标准时区的时间:

>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00
 
  查看全部
一般timestamp时间戳格式为10位,如果是13位,则需要除以1000,

1554369904000
为例,计算这个数字的本地时间。
 
如果使用
t=1554369904000
datetime.datetime.fromtimestamp(t/1000)
 
得到的是:
(2019, 4, 4, 17, 25, 4)
 
然而这个时间并不是我想要的,和我想要的时间差了8个时区。
 
那么可以使用
datetime.datetime.utcfromtimestamp(t/1000)
这个返回的就是我想要的时间了
(2019, 4, 4, 9, 25, 4)
 
 
引用:
timestamp转换为datetime
要把timestamp转换为datetime,使用datetime提供的fromtimestamp()方法:

>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00
注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。

本地时间是指当前操作系统设定的时区。例如北京时区是东8区,则本地时间:

2015-04-19 12:20:00
实际上就是UTC+8:00时区的时间:

2015-04-19 12:20:00 UTC+8:00
而此刻的格林威治标准时间与北京时间差了8小时,也就是UTC+0:00时区的时间应该是:

2015-04-19 04:20:00 UTC+0:00
timestamp也可以直接被转换到UTC标准时区的时间:

>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00

 
 

Linux下自制有道词典 - python 解密有道词典JS加密

python爬虫李魔佛 发表了文章 • 0 个评论 • 410 次浏览 • 2019-02-23 20:17 • 来自相关话题

对于爬虫新手来说,JS解密是一道过不去的坎,需要不断地练习。
平时在linux下开发,鉴于没有什么好用翻译软件,打开网易也占用系统资源,所以写了个在控制台的翻译软件接口。
 
使用python爬虫,查看网页的JS加密方法,一步一步地分析,就能够得到最后的加密方法啦。
 
直接给出代码:
 # -*- coding: utf-8 -*-
# website: http://30daydo.com
# @Time : 2019/2/23 19:34
# @File : youdao.py
# 解密有道词典的JS


import hashlib
import random
import requests
import time


def md5_(word):
s = bytes(word, encoding='utf8')
m = hashlib.md5()
m.update(s)
ret = m.hexdigest()
return ret

def get_sign(word, salt):
ret = md5_('fanyideskweb' + word + salt + 'p09@Bn{h02_BIEe]$P^nG')
return ret


def youdao(word):
url = 'http://fanyi.youdao.com/translate_o?smartresult=dict&smartresult=rule'
headers = {
'Host': 'fanyi.youdao.com',
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3',
'Accept-Encoding': 'gzip, deflate',
'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8',
'X-Requested-With': 'XMLHttpRequest',
'Referer': 'http://fanyi.youdao.com/',
'Content-Length': '252',
'Cookie': 'YOUDAO_MOBILE_ACCESS_TYPE=1; OUTFOX_SEARCH_USER_ID=1672542763@10.169.0.83; JSESSIONID=aaaWzxpjeDu1gbhopLzKw; ___rl__test__cookies=1550913722828; OUTFOX_SEARCH_USER_ID_NCOO=372126049.6326876',
'Connection': 'keep-alive',
'Pragma': 'no-cache',
'Cache-Control': 'no-cache',
}

ts = str(int(time.time()*1000))
salt=ts+str(random.randint(0,10))
bv = md5_("5.0 (Windows)")
sign= get_sign(word,salt)

post_data = {
'i': word,
'from': 'AUTO', 'to': 'AUTO', 'smartresult': 'dict', 'client': 'fanyideskweb', 'salt': salt,
'sign': sign, 'ts': ts, 'bv': bv, 'doctype': 'json', 'version': '2.1',
'keyfrom': 'fanyi.web', 'action': 'FY_BY_REALTIME', 'typoResult': 'false'
}

r = requests.post(
url=url,
headers=headers,
data=post_data
)

for item in r.json().get('smartResult',{}).get('entries'):
print(item)

word='student'
youdao(word)
得到结果:





 
Github:
https://github.com/Rockyzsu/CrawlMan/tree/master/youdao_dictionary
原创文章,转载请注明出处
http://30daydo.com/article/416 查看全部
对于爬虫新手来说,JS解密是一道过不去的坎,需要不断地练习。
平时在linux下开发,鉴于没有什么好用翻译软件,打开网易也占用系统资源,所以写了个在控制台的翻译软件接口。
 
使用python爬虫,查看网页的JS加密方法,一步一步地分析,就能够得到最后的加密方法啦。
 
直接给出代码:
 
# -*- coding: utf-8 -*-
# website: http://30daydo.com
# @Time : 2019/2/23 19:34
# @File : youdao.py
# 解密有道词典的JS


import hashlib
import random
import requests
import time


def md5_(word):
s = bytes(word, encoding='utf8')
m = hashlib.md5()
m.update(s)
ret = m.hexdigest()
return ret

def get_sign(word, salt):
ret = md5_('fanyideskweb' + word + salt + 'p09@Bn{h02_BIEe]$P^nG')
return ret


def youdao(word):
url = 'http://fanyi.youdao.com/translate_o?smartresult=dict&smartresult=rule'
headers = {
'Host': 'fanyi.youdao.com',
'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Language': 'zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3',
'Accept-Encoding': 'gzip, deflate',
'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8',
'X-Requested-With': 'XMLHttpRequest',
'Referer': 'http://fanyi.youdao.com/',
'Content-Length': '252',
'Cookie': 'YOUDAO_MOBILE_ACCESS_TYPE=1; OUTFOX_SEARCH_USER_ID=1672542763@10.169.0.83; JSESSIONID=aaaWzxpjeDu1gbhopLzKw; ___rl__test__cookies=1550913722828; OUTFOX_SEARCH_USER_ID_NCOO=372126049.6326876',
'Connection': 'keep-alive',
'Pragma': 'no-cache',
'Cache-Control': 'no-cache',
}

ts = str(int(time.time()*1000))
salt=ts+str(random.randint(0,10))
bv = md5_("5.0 (Windows)")
sign= get_sign(word,salt)

post_data = {
'i': word,
'from': 'AUTO', 'to': 'AUTO', 'smartresult': 'dict', 'client': 'fanyideskweb', 'salt': salt,
'sign': sign, 'ts': ts, 'bv': bv, 'doctype': 'json', 'version': '2.1',
'keyfrom': 'fanyi.web', 'action': 'FY_BY_REALTIME', 'typoResult': 'false'
}

r = requests.post(
url=url,
headers=headers,
data=post_data
)

for item in r.json().get('smartResult',{}).get('entries'):
print(item)

word='student'
youdao(word)

得到结果:

youdao.PNG

 
Github:
https://github.com/Rockyzsu/CrawlMan/tree/master/youdao_dictionary
原创文章,转载请注明出处
http://30daydo.com/article/416

python 中文图片文字识别

python李魔佛 发表了文章 • 0 个评论 • 450 次浏览 • 2019-02-01 10:47 • 来自相关话题

pytesseract这个库识别率偏低,也就菜鸟才会用。
使用方法很简单,安装好pytesseract(里面很多坑,小白的话不可避免要折腾一番),然后下载一个中文的字库,百度网盘:https://pan.baidu.com/s/1_jom2d95IeR40gsvkhUuvQ
 
然后把文件放到tesseract的文件夹中 C:\Program Files (x86)\Tesseract-OCR\tessdata 
然后就可以拿来识别了:
from PIL import Image
im = Image.open('chinese.jpg')
plt.figure(figsize=(20,20))
plt.imshow(im)

pytesseract.image_to_string(im,lang='chi_sim')
图片的内容是这样的:





 
然后识别效果如下:
 
'可L又使用以下的语句i上图片显示大 此'
还是不咋地。
 
那么可以换成大厂的API。试试百度的:
""" 读取图片 """
def get_file_content(filePath):
with open(filePath, 'rb') as fp:
return fp.read()

image = get_file_content('example.jpg')

""" 调用通用文字识别, 图片参数为本地图片 """
client.basicGeneral(image);

""" 如果有可选参数 """
options = {}
options["language_type"] = "CHN_ENG"
options["detect_direction"] = "true"
options["detect_language"] = "true"
options["probability"] = "true"

from aip import AipOcr

""" 你的 APPID AK SK """
APP_ID = '你的 App ID'
API_KEY = '你的 Api Key'
SECRET_KEY = '你的 Secret Key'

client = AipOcr(APP_ID, API_KEY, SECRET_KEY)


""" 带参数调用通用文字识别, 图片参数为本地图片 """
client.basicGeneral(image, options)

url = "https//www.x.com/sample.jpg"

""" 调用通用文字识别, 图片参数为远程url图片 """
client.basicGeneralUrl(url);

""" 如果有可选参数 """
options = {}
options["language_type"] = "CHN_ENG"
options["detect_direction"] = "true"
options["detect_language"] = "true"
options["probability"] = "true"

""" 带参数调用通用文字识别, 图片参数为远程url图片 """
client.basicGeneralUrl(url, options)
先去百度云申请一个API,免费的。
https://cloud.baidu.com/doc/OCR/OCR-Python-SDK.html#.E9.85.8D.E7.BD.AEAipOcr
然后把key复制到上面的代码中就可以了。
 
然后再调用看看结果:
可以使用以下的语句让图片显示大些正确率明显高很多了。
 
 
 
  查看全部
pytesseract这个库识别率偏低,也就菜鸟才会用。
使用方法很简单,安装好pytesseract(里面很多坑,小白的话不可避免要折腾一番),然后下载一个中文的字库,百度网盘:https://pan.baidu.com/s/1_jom2d95IeR40gsvkhUuvQ
 
然后把文件放到tesseract的文件夹中 C:\Program Files (x86)\Tesseract-OCR\tessdata 
然后就可以拿来识别了:
from PIL import Image
im = Image.open('chinese.jpg')
plt.figure(figsize=(20,20))
plt.imshow(im)

pytesseract.image_to_string(im,lang='chi_sim')

图片的内容是这样的:

中文1.JPG

 
然后识别效果如下:
 
'可L又使用以下的语句i上图片显示大 此'

还是不咋地。
 
那么可以换成大厂的API。试试百度的:
""" 读取图片 """
def get_file_content(filePath):
with open(filePath, 'rb') as fp:
return fp.read()

image = get_file_content('example.jpg')

""" 调用通用文字识别, 图片参数为本地图片 """
client.basicGeneral(image);

""" 如果有可选参数 """
options = {}
options["language_type"] = "CHN_ENG"
options["detect_direction"] = "true"
options["detect_language"] = "true"
options["probability"] = "true"

from aip import AipOcr

""" 你的 APPID AK SK """
APP_ID = '你的 App ID'
API_KEY = '你的 Api Key'
SECRET_KEY = '你的 Secret Key'

client = AipOcr(APP_ID, API_KEY, SECRET_KEY)


""" 带参数调用通用文字识别, 图片参数为本地图片 """
client.basicGeneral(image, options)

url = "https//www.x.com/sample.jpg"

""" 调用通用文字识别, 图片参数为远程url图片 """
client.basicGeneralUrl(url);

""" 如果有可选参数 """
options = {}
options["language_type"] = "CHN_ENG"
options["detect_direction"] = "true"
options["detect_language"] = "true"
options["probability"] = "true"

""" 带参数调用通用文字识别, 图片参数为远程url图片 """
client.basicGeneralUrl(url, options)

先去百度云申请一个API,免费的。
https://cloud.baidu.com/doc/OCR/OCR-Python-SDK.html#.E9.85.8D.E7.BD.AEAipOcr
然后把key复制到上面的代码中就可以了。
 
然后再调用看看结果:
可以使用以下的语句让图片显示大些
正确率明显高很多了。
 
 
 
 

可转债价格分布堆叠图 绘制 可视化 python+pyecharts

量化交易李魔佛 发表了文章 • 0 个评论 • 666 次浏览 • 2019-01-30 10:59 • 来自相关话题

这一节课带大家学习如何利用可视化,更好的呈现数据。
即使你有很多数据,可是,你无法直观地看到数据的总体趋势。使用可视化的绘图,可以帮助我们看到数据背后看不到的数据。 比如我已经有每一个可转债的价格,评级。数据如下:





 点击查看大图

如果我用下面的图形就可以看出规律:




 点击查看大图

横坐标是价格,纵坐标是落在该价格的可转债数量,不同颜色代表不同评级的可转债。
 
可以看到大部分AA-评级(浅橙色)的可转债价格都在100元以下,而AA(浅蓝色)的可转债价格分布较为平均,从90到110都有。而AA+和AAA的一般都在100以上。
 
那么如何使用代码实现呢?from setting import get_mysql_conn,get_engine
import pandas as pd
import pymongo
from pyecharts import Geo,Style,Map
engine = get_engine('db_stock',local='local')
# 堆叠图
from pyecharts import Bar
df = pd.read_sql('tb_bond_jisilu',con=engine)

result ={}
for name,grades in df.groupby('评级'):
# print(name,grades[['可转债名称','可转债价格']])
for each in grades['可转债价格']:
result.setdefault(name,)
result[name].append(each)


# 确定价格的范围

value = [str(i) for i in range(85,140)]
ret = [0]*len(value)
ret1 = dict(zip(value,ret))

ret_A_add = ret1.copy()
for item in result['A+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
ret_A_add[k]+=1

retAA_ = ret1.copy()
for item in result['']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_[k]+=1

retAA = ret1.copy()
for item in result['AA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA[k]+=1

retAA_add = ret1.copy()
for item in result['AA+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_add[k]+=1

retAAA = ret1.copy()
for item in result['AAA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAAA[k]+=1

bar = Bar('可转债价格分布')
bar.add('A+',value,list(ret_A_add.values()),is_stack=True,yaxis_max=11)
bar.add('',value,list(retAA_.values()),is_stack=True,yaxis_max=11)
bar.add('AA',value,list(retAA.values()),is_stack=True,yaxis_max=11)
bar.add('AA+',value,list(retAA_add.values()),is_stack=True,yaxis_max=11)
bar.add('AAA',value,list(retAAA.values()),is_stack=True,yaxis_max=11)
如果没有安装pyecharts,需要用pip安装即可。
 
上面代码运行后就可以得到上面最开始那张堆叠图了。
github:https://github.com/Rockyzsu/convertible_bond​ 
 
 
原创文章
转载请注明出处:
 http://30daydo.com/article/400 

  查看全部
这一节课带大家学习如何利用可视化,更好的呈现数据。
即使你有很多数据,可是,你无法直观地看到数据的总体趋势。使用可视化的绘图,可以帮助我们看到数据背后看不到的数据。 比如我已经有每一个可转债的价格,评级。数据如下:

可转债数据.JPG

 点击查看大图

如果我用下面的图形就可以看出规律:
可转债价格分布.JPG

 点击查看大图

横坐标是价格,纵坐标是落在该价格的可转债数量,不同颜色代表不同评级的可转债。
 
可以看到大部分AA-评级(浅橙色)的可转债价格都在100元以下,而AA(浅蓝色)的可转债价格分布较为平均,从90到110都有。而AA+和AAA的一般都在100以上。
 
那么如何使用代码实现呢?
from  setting import get_mysql_conn,get_engine
import pandas as pd
import pymongo
from pyecharts import Geo,Style,Map
engine = get_engine('db_stock',local='local')
# 堆叠图
from pyecharts import Bar
df = pd.read_sql('tb_bond_jisilu',con=engine)

result ={}
for name,grades in df.groupby('评级'):
# print(name,grades[['可转债名称','可转债价格']])
for each in grades['可转债价格']:
result.setdefault(name,)
result[name].append(each)


# 确定价格的范围

value = [str(i) for i in range(85,140)]
ret = [0]*len(value)
ret1 = dict(zip(value,ret))

ret_A_add = ret1.copy()
for item in result['A+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
ret_A_add[k]+=1

retAA_ = ret1.copy()
for item in result['']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_[k]+=1

retAA = ret1.copy()
for item in result['AA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA[k]+=1

retAA_add = ret1.copy()
for item in result['AA+']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAA_add[k]+=1

retAAA = ret1.copy()
for item in result['AAA']:
for k in ret1:
if float(k)+0.5>item and float(k)-0.5<=item:
retAAA[k]+=1

bar = Bar('可转债价格分布')
bar.add('A+',value,list(ret_A_add.values()),is_stack=True,yaxis_max=11)
bar.add('',value,list(retAA_.values()),is_stack=True,yaxis_max=11)
bar.add('AA',value,list(retAA.values()),is_stack=True,yaxis_max=11)
bar.add('AA+',value,list(retAA_add.values()),is_stack=True,yaxis_max=11)
bar.add('AAA',value,list(retAAA.values()),is_stack=True,yaxis_max=11)

如果没有安装pyecharts,需要用pip安装即可。
 
上面代码运行后就可以得到上面最开始那张堆叠图了。
github:https://github.com/Rockyzsu/convertible_bond​ 
 
 
原创文章
转载请注明出处:
 http://30daydo.com/article/400 

 

可转债套利【一】 python找出折价可转债个股

量化交易李魔佛 发表了文章 • 6 个评论 • 7172 次浏览 • 2018-03-16 17:17 • 来自相关话题

关于可转债的定义,可以到https://xueqiu.com/6832369826/103042836 这里科普一下。
 
下面的内容默认你对可转债已经有一定的了解。
 
可转债的价值=正股价格/转股价格 + 利息,忽略可转债的利息,直接用公式 可转债的价值=正股价格/转股价格 计算可转债的价值。
 
如果当前可转债的交易价格(在交易软件上显示的价格)如:




所以万信转债的价格是121.5元,然后万信转债的价值呢? 按照上面的公式,万信转债的正股是万达信息,今天万达信息  (2018-03-16)的股价是





以收盘价为例,17.25。
 
而万信转债的股转价格呢? 这个可以到万信转债F10页面的公告中找到,为13.11元。 所以万信转债的价值是
17.25/13.11 = 1.315 , 可转债单位是100, 所以万信转债的内在价值是1.315*100=131.5, 而当前的交易价格为 121.5





 
 
也就是你用121.5元买到一个价值 131.5的商品, 所以相当于打折买到了一个超值的商品,所以当前的万信转债是折价状态。
 
所以本次任务就是要找出可交易的可转债中折价状态的可转债。
 
然后直接上干货。上python代码。#-*-coding=utf-8
'''
可转债监控
'''
import tushare as ts
from setting import get_engine
engine = get_engine('db_bond')
import pandas as pd
import datetime
class ConvertBond():

def __init__(self):
self.conn=ts.get_apis()
self.allBonds=ts.new_cbonds(pause=2)
self.onSellBond=self.allBonds.dropna(subset=['marketprice'])
self.today=datetime.datetime.now().strftime('%Y-%m-%d %H:%M')

def stockPrice(self,code):
stock_df = ts.get_realtime_quotes(code)
price = float(stock_df['price'].values[0])
return price

def dataframe(self):
price_list=[]
for code in self.onSellBond['scode']:
price_list.append(self.stockPrice(code))
self.onSellBond['stock_price']=price_list
self.onSellBond['ratio'] = (
self.onSellBond['marketprice']
/(self.onSellBond['stock_price'] / self.onSellBond['convprice'])-1)*100
self.onSellBond['Updated']=self.today
self.onSellBond.to_sql('tb_bond',engine,if_exists='replace')

def closed(self):
ts.close_apis(self.conn)

def main():
bond=ConvertBond()
bond.dataframe()
bond.closed()
if __name__=='__main__':
main()







 上面的setting库,把下面的*** 替换成你自己的Mysql用户和密码即可。import os
import MySQLdb
MYSQL_USER = *********
MYSQL_PASSWORD = ********
MYSQL_HOST = *********
MYSQL_PORT = *****

def get_engine(db):
engine = create_engine('mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8'.format(MYSQL_USER, MYSQL_PASSWORD, MYSQL_HOST, MYSQL_PORT, db))
return engine 
上面的少于100行的代码就能够满足你的要求。
运行后会把结果保存在MySQL 数据库。如下图所示:







点击放大
  2018-03-16 可转债表格
 
其中折价率是ratio列。按照ratio列进行排列,只有2个是正,也就是当前市场是只有2只可转债是处于折价状态的,其余的都是溢价状态(价格比内在价值要贵,忽略利息的前提下,如果把4~5%的利息也算进去的话,-3~4%的折价率其实也算小折价吧)
 
目前万信转债折价10个点,宝信转债折价5.8个点。 所以适合低风险投资者建仓。 因为可转债有兜底价格,所以出现亏损的概率很低(除非遇到黑天鹅,公司破产了,像遇到乐视这种PPT独角兽公司,欠债不还的。 但是A股上能够有资格发行可转债的,本身对公司的盈利,分红都有硬性要求)。
 
所以可以保存上面的代码,可以每天运行一次,可以很方便地找出折价的个股,当然也可以在盘中一直监测,因为可转债的价格是实时变化的,一旦遇到大跌,跌到折价状态,你也可以择时入手标的。

原文链接:
http://30daydo.com/article/286
转载请注明出处 查看全部
关于可转债的定义,可以到https://xueqiu.com/6832369826/103042836 这里科普一下。
 
下面的内容默认你对可转债已经有一定的了解。
 
可转债的价值=正股价格/转股价格 + 利息,忽略可转债的利息,直接用公式 可转债的价值=正股价格/转股价格 计算可转债的价值。
 
如果当前可转债的交易价格(在交易软件上显示的价格)如:
wxzz.GIF

所以万信转债的价格是121.5元,然后万信转债的价值呢? 按照上面的公式,万信转债的正股是万达信息,今天万达信息  (2018-03-16)的股价是

万达信息.GIF

以收盘价为例,17.25。
 
而万信转债的股转价格呢? 这个可以到万信转债F10页面的公告中找到,为13.11元。 所以万信转债的价值是
17.25/13.11 = 1.315 , 可转债单位是100, 所以万信转债的内在价值是1.315*100=131.5, 而当前的交易价格为 121.5

wxzz.GIF

 
 
也就是你用121.5元买到一个价值 131.5的商品, 所以相当于打折买到了一个超值的商品,所以当前的万信转债是折价状态。
 
所以本次任务就是要找出可交易的可转债中折价状态的可转债。
 
然后直接上干货。上python代码。
#-*-coding=utf-8
'''
可转债监控
'''
import tushare as ts
from setting import get_engine
engine = get_engine('db_bond')
import pandas as pd
import datetime
class ConvertBond():

def __init__(self):
self.conn=ts.get_apis()
self.allBonds=ts.new_cbonds(pause=2)
self.onSellBond=self.allBonds.dropna(subset=['marketprice'])
self.today=datetime.datetime.now().strftime('%Y-%m-%d %H:%M')

def stockPrice(self,code):
stock_df = ts.get_realtime_quotes(code)
price = float(stock_df['price'].values[0])
return price

def dataframe(self):
price_list=[]
for code in self.onSellBond['scode']:
price_list.append(self.stockPrice(code))
self.onSellBond['stock_price']=price_list
self.onSellBond['ratio'] = (
self.onSellBond['marketprice']
/(self.onSellBond['stock_price'] / self.onSellBond['convprice'])-1)*100
self.onSellBond['Updated']=self.today
self.onSellBond.to_sql('tb_bond',engine,if_exists='replace')

def closed(self):
ts.close_apis(self.conn)

def main():
bond=ConvertBond()
bond.dataframe()
bond.closed()
if __name__=='__main__':
main()







 上面的setting库,把下面的*** 替换成你自己的Mysql用户和密码即可。
import os
import MySQLdb
MYSQL_USER = *********
MYSQL_PASSWORD = ********
MYSQL_HOST = *********
MYSQL_PORT = *****

def get_engine(db):
engine = create_engine('mysql+pymysql://{}:{}@{}:{}/{}?charset=utf8'.format(MYSQL_USER, MYSQL_PASSWORD, MYSQL_HOST, MYSQL_PORT, db))
return engine
 
上面的少于100行的代码就能够满足你的要求。
运行后会把结果保存在MySQL 数据库。如下图所示:


Screenshot_from_2018-03-28_09-14-35.png


点击放大
  2018-03-16 可转债表格
 
其中折价率是ratio列。按照ratio列进行排列,只有2个是正,也就是当前市场是只有2只可转债是处于折价状态的,其余的都是溢价状态(价格比内在价值要贵,忽略利息的前提下,如果把4~5%的利息也算进去的话,-3~4%的折价率其实也算小折价吧)
 
目前万信转债折价10个点,宝信转债折价5.8个点。 所以适合低风险投资者建仓。 因为可转债有兜底价格,所以出现亏损的概率很低(除非遇到黑天鹅,公司破产了,像遇到乐视这种PPT独角兽公司,欠债不还的。 但是A股上能够有资格发行可转债的,本身对公司的盈利,分红都有硬性要求)。
 
所以可以保存上面的代码,可以每天运行一次,可以很方便地找出折价的个股,当然也可以在盘中一直监测,因为可转债的价格是实时变化的,一旦遇到大跌,跌到折价状态,你也可以择时入手标的。

原文链接:
http://30daydo.com/article/286
转载请注明出处

dataframe reindex和reset_index区别

量化交易李魔佛 发表了文章 • 0 个评论 • 14668 次浏览 • 2017-12-30 15:58 • 来自相关话题

reset_index的作用是重新设置dataframe的index,范围为0~len(df)。 df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [10, 20, 30, 40, 50]})
df2 = pd.DataFrame({'A': [6], 'B': [60]})
print 'df\n', df
print 'df2\n', df2

df_x = [df, df2]
result = pd.concat(df_x)
print 'first result\n', result 
上面代码把df和df2合并为一个result,但是result的index是乱的。





 
那么执行result2= result.reset_index()
得到如下的result2: (默认只是返回一个copy,原来的result没有发生改变,所以需要副本赋值给result2)





可以看到,原来的一列index现在变成了columns之一,新的index为[0,1,2,3,4,5]
如果添加参数 reset_index(drop=True) 那么原index会被丢弃,不会显示为一个新列。result2 = result.reset_index(drop=True)



 
reindex的作用是按照原有的列进行重新生成一个新的df。
 
还是使用上面的代码
result目前是df和df2的合并序列。
如下:




 
可以看到index为[0,1,2,3,4,0]
执行 result3 = result.reindex(columns=['A','C'])




 
可以看到,原index并没有发生改变,而列变成了A和C,因为C是不存在的,所以使用了NaB填充,这个值的内容可以自己填充,可以改为默认填充0或者任意你想要的数据。reindex(columns=..)的作用类似于重新把列的顺序整理一遍, 而使用reindex(index=....) 则按照行重新整理一遍。

原文链接:http://30daydo.com/article/257 
欢迎转载,注明出处
  查看全部
reset_index的作用是重新设置dataframe的index,范围为0~len(df)。
    df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [10, 20, 30, 40, 50]})
df2 = pd.DataFrame({'A': [6], 'B': [60]})
print 'df\n', df
print 'df2\n', df2

df_x = [df, df2]
result = pd.concat(df_x)
print 'first result\n', result
 
上面代码把df和df2合并为一个result,但是result的index是乱的。

df4.PNG

 
那么执行
result2= result.reset_index()

得到如下的result2: (默认只是返回一个copy,原来的result没有发生改变,所以需要副本赋值给result2)

df5.PNG

可以看到,原来的一列index现在变成了columns之一,新的index为[0,1,2,3,4,5]
如果添加参数 reset_index(drop=True) 那么原index会被丢弃,不会显示为一个新列。
result2 = result.reset_index(drop=True)
df6.PNG

 
reindex的作用是按照原有的列进行重新生成一个新的df。
 
还是使用上面的代码
result目前是df和df2的合并序列。
如下:
df7.PNG

 
可以看到index为[0,1,2,3,4,0]
执行 
result3 = result.reindex(columns=['A','C'])

df8.PNG

 
可以看到,原index并没有发生改变,而列变成了A和C,因为C是不存在的,所以使用了NaB填充,这个值的内容可以自己填充,可以改为默认填充0或者任意你想要的数据。reindex(columns=..)的作用类似于重新把列的顺序整理一遍, 而使用reindex(index=....) 则按照行重新整理一遍。

原文链接:http://30daydo.com/article/257 
欢迎转载,注明出处
 

聚币网/coinegg API使用教程 附demo代码

量化交易李魔佛 发表了文章 • 56 个评论 • 13908 次浏览 • 2017-05-11 09:05 • 来自相关话题

******* 2018.14 更新 ***********
现在聚币网已经被关闭了,但是所有的币都可以转移到CoinEgg网了,币种和以前一模一样,只是用户参与度减少了很多,市场不是一个有效的市场,但是这对于操盘手来说,更加是一个收益大的地方。
使用下面链接注册后,用户可以返30%的佣金。 其实也无所谓,佣金不会很多,一次也就几分钱到几毛钱,自己去官网注册也可以。看个人心情啦。
 
http://www.coinegg.com/user/register?inv=7d91a
 
 后续会就coinegg写一个自动交易的系统出来
 

******* 8.28 更新 ***********
不少人反应签名不通过,经过调试,发现是加密前的字符拼接的顺序问题,这个拼接顺序要和你post上去的顺序要一致,才能通过。如果出现104的返回代码,说明是你的顺序问题,说明你的签名没有成功。
 
贴代码说明下: 使用字典循环,就可以知道正确的拼接顺序。 下面的代码是获取成交订单的。 def Trade_list(self, coin):
'''
Trade_list(挂单查询)
您指定时间后的挂单,可以根据类型查询,比如查看正在挂单和全部挂单
Path:/api/v1/trade_list/
Request类型:POST
参数
key - API key
signature - signature
nonce - nonce
since - unix timestamp(utc timezone) default == 0, i.e. 返回所有
coin - 币种简称,例如btc、ltc、xas
type - 挂单类型[open:正在挂单, all:所有挂单]

返回JSON dictionary
id - 挂单ID
datetime - date and time
type - "buy" or "sell"
price - price
amount_original - 下单时数量
amount_outstanding - 当前剩余数量
'''
url = self.host + '/api/v1/trade_list/'
time.sleep(random.random())
nonce = self.get_nonce_time()
types = 'all'
since = 0
parameters = {'key': self.public_key, 'nonce': str(nonce), 'type': types, 'coin': coin, 'signature': ''}
# print parameters
post_data = ''
for k, v in parameters.items():
if not isinstance(v, str):
#if type(v) is not types.StringType:
v = str(v)
post_data = post_data + k
post_data = post_data + '=' + v + '&'

#print 'post-data:\n',post_data
post_data = post_data[:-1]
post_data = post_data.replace('&signature=', '')
#print post_data

signature = hmac.new(self.md5, post_data, digestmod=hashlib.sha256).digest()
sig = self.toHex(signature)
parameters['signature'] = sig
#print parameters
r = requests.post(url=url, data=parameters)
s = r.json()
#print s
return s
 
如果还是没有解决的话就网站内私信我看看问题所在。

******************************************* 原文内容 ***************************************************
 

 官方有API的文档,可是这个文档就像一个草稿一样,两个基本例子都没有。 所以自己摸索一下,自己写一个现成的例子给大家,可以有个参考。 下面的例子亲测成功。 
 
首先看一下官方的API文档:

一、API使用说明

1、请求过程说明

1.1 构造请求数据,用户数据按照Jubi提供的接口规则,通过程序生成签名和要传输给Jubi的数据集合;

1.2 发送请求数据,把构造完成的数据集合通过POST/GET提交的方式传递给Jubi;

1.3 Jubi对请求数据进行处理,服务器在接收到请求后,会首先进行安全校验,验证通过后便会处理该次发送过来的请求;

1.4 返回响应结果数据,Jubi把响应结果以JSON的格式反馈给用户,具体的响应格式,错误代码参见接口部分;

1.5 对获取的返回结果数据进行处理;

2、安全认证

所有的private API都需要经过认证

Api的申请可以到财务中心 -> API,申请得到私钥和公钥,私钥Jubi将不做储存,一旦丢失将无法找回

注意:请勿向任何人泄露这两个参数,这像您的密码一样重要

2.签名机制

每次请求private api 都需要验证签名,发送的参数示例:

$param = array(

amount => 1,

price => 10000,

type => 'buy',

nonce => 141377098123

key => 5zi7w-4mnes-swmc4-egg9b-f2iqw-396z4-g541b

signature => 459c69d25c496765191582d9611028b9974830e9dfafd762854669809290ed82

);

nonce 可以理解为一个递增的整数:http://zh.wikipedia.org/wiki/Nonce

key 是申请到的公钥

signature是签名,是将amount price type nonce key等参数通过'&'字符连接起来通过md5(私钥)为key进行sha256算法加密得到的值.

 

 
 
  
首先聚币的行情是使用网络爬虫获取的,而说明中给出了一系列的参数,你需要做的就是把这些参数填充上去。
 
如果你只是想要获取行情,那么事情容易很多。 def real_time_ticker(coin):
url = 'https://www.jubi.com/api/v1/ticker/'
try:
data = requests.post(url, data={'coin': coin}).json()

except Exception ,e:
print e
return data
上面代码展示的时候获取实时的行情。委一和买一的价格,数量,和当前成交的数量,价格。
 按照上面的格式,把参数coin填上去,比如要获取泽塔币, real_time_ticker('zet') 就会返回获取的数据。{u'sell': u'0.179000', u'volume': 21828245.102822, u'buy': u'0.175010', u'last': u'0.179000', u'vol': 108290769.9171, u'high': u'0.289000', u'low': u'0.119141'}
 
 
所有的private API都需要经过认证, 就是说如果你要进行交易,委托,下单,你就需要使用私钥和公钥,并进行一系列的加密。

每次请求private api 都需要验证签名,发送的参数示例:

$param = array(

amount => 1,

price => 10000,

type => 'buy',

nonce => 141377098123

key => 5zi7w-4mnes-swmc4-egg9b-f2iqw-396z4-g541b

signature => 459c69d25c496765191582d9611028b9974830e9dfafd762854669809290ed82

);

nonce 可以理解为一个递增的整数:http://zh.wikipedia.org/wiki/Nonce

key 是申请到的公钥

signature是签名,是将amount price type nonce key等参数通过'&'字符连接起来通过md5(私钥)为key进行sha256算法加密得到的值.

 
 
比如下单:

Trade_add(下单)
Path:/api/v1/trade_add/
Request类型:POST
 
参数
key - API key
signature - signature
nonce - nonce
amount - 购买数量
price - 购买价格
type - 买单或者卖单
coin - 币种简称,例如btc、ltc、xas
id - 挂单ID
result - true(成功), false(失败)
{"result":true, "id":"11"}
 
返回JSON dictionary
id - 挂单ID
result - true(成功), false(失败)
 
返回结果示例:
{"result":true, "id":"11"}
 


首先解决nonce。
 
在维基百科中
在安全工程中,Nonce是一个在加密通信只能使用一次的数字。在认证协议中,它往往是一个随机或伪随机数,以避免重放攻击。Nonce也用于流密码以确保安全。如果需要使用相同的密钥加密一个以上的消息,就需要Nonce来确保不同的消息与该密钥加密的密钥流不同。
 
结合stackoverflow, nonce只是一个12位的随机数。
可以用以下方法获得这个随机数 def get_nonce(self):
lens=12
return ''.join([str(random.randint(0, 9)) for i in range(lens)])
 聚币中的nonce的位数是12位,所以lens定义为12
 
或者可以直接用时间函数生成: def get_nonce_time(self):
lens = 12
curr_stamp = time.time()*100
nonece=int(curr_stamp)
return nonece
 
然后是signature。
signature是签名,是将amount price type nonce key等参数通过'&'字符连接起来通过md5(私钥)为key进行sha256算法加密得到的值.

先把私钥进行md5处理 def getHash(self,s):
m=hashlib.md5()
m.update(s)
return m.hexdigest()
只要把私钥传入函数getHash就可以得到一个md5处理过的字符串。
 
私钥是聚币网给每个用户分配的字符串,是唯一的,这里假设为private_key=123456789吧,具体是多少,在你的聚币网设置里面可以找到。
sha_256key=self.getHash(private_key)
 
按照要求吧 你要post的数据字符串连起来nonce=self.get_nonce_time
type='buy'
amount='10000'
key='xxxxxxxxxxx‘ #这个是聚币网给你的公钥,同样在设置里头可以找到
price='10' #你要设置的价格为10
coin='zet'
message = "amount=“+amount+”&nonce="+str(nonce)+"&type="+type+"&key="+key+'&price="+price+"&coin"+coin

signature = hmac.new(sha_256key, message, digestmod=hashlib.sha256).digest()

这样获得signature之后,就可以通过签名来进行post操作。

data_wrap={'nonce':nonce,'key':key_value,'signature':signature}

js=requests.post(url,data=data_wrap).json()
 
如果直接按照上面的代码去获取账户相关信息或者去挂单的话,会返回104的签名错误。 经过不断的排查,发现是signature的字符格式的问题。
 
构造一个str转换格式的函数: def toHex(self,str):
lst =
for ch in str:
hv = hex(ord(ch)).replace('0x', '')
if len(hv) == 1:
hv = '0' + hv
lst.append(hv)
return reduce(lambda x, y: x + y, lst)这个函数的作用就是把原来十六进制格式的字符完全转化成十六进制,把前面的0x去掉,不足2位的补全为2位。
把经过处理的signature进行格式转换后,几次提交,终于发现可以获取到用户的账户信息,进行下单,撤单,等操作。
 
 
 
下面是一个获取账户信息的代码段: def getAccount(self):
url='https://www.jubi.com/api/v1/balance/'

nonce_value=self.get_nonce_time()
print nonce_value
key_value=self.public_key
private_key=self.private_key

s='nonce='+str(nonce_value)+'&'+'key='+key_value

print s

#signature是签名,是将amount price type nonce key等参数通过'&'字符连接起来通过md5(私钥)为key进行sha256算法加密得到的值.
md5=self.getHash(private_key)
print md5
print type(md5)

msg=bytes(s).encode('utf-8')
key=bytes(md5).encode('utf-8')
signature =hmac.new(key,msg,digestmod=hashlib.sha256).digest()
print signature
print type(signature)
sig=self.toHex(signature)

print sig
data_wrap={'nonce':nonce_value,'key':key_value,'signature':sig}

print data_wrap

data_en=urllib.urlencode(data_wrap)
req=urllib2.Request(url,data=data_en)
resp=urllib2.urlopen(req).read()
print resp


def toHex(self,str):
lst =
for ch in str:
hv = hex(ord(ch)).replace('0x', '')
if len(hv) == 1:
hv = '0' + hv
lst.append(hv)
return reduce(lambda x, y: x + y, lst)
 
以上的代码运行后返回一下账户信息:{"uid":123456,"nameauth":1,"moflag":1,"asset":,"btc_balance":0,"btc_lock":0,"drk_balance":0,"drk_lock":0,"blk_balance":0,"blk_lock":0,"vrc_balance":0,"vrc_lock":0,"tfc_balance":0,"tfc_lock":0,"jbc_balance":0,"jbc_lock":0,"ltc_balance":0,"ltc_lock":0,"doge_balance":0,"doge_lock":0,"xpm_balance":0,"xpm_lock":0,"ppc_balance":0,"ppc_lock":0,"wdc_balance":0,"wdc_lock":0,"vtc_balance":0,"vtc_lock":0,"max_balance":0,"max_lock":0,"ifc_balance":0,"ifc_lock":0,"zcc_balance":0,"zcc_lock":0,"zet_balance":0,"zet_lock":0,"eac_balance":0,"eac_lock":0,"fz_balance":0,"fz_lock":0,"skt_balance":0,"skt_lock":0,"plc_balance":0,"plc_lock":0,"mtc_balance":0,"mtc_lock":0,"qec_balance":0,"qec_lock":0,"lkc_balance":10,"lkc_lock":0,"met_balance":0,"met_lock":0,"ytc_balance":0,"ytc_lock":0,"hlb_balance":0,"hlb_lock":0,"game_balance":0,"game_lock":0,"rss_balance":0,"rss_lock":0,"rio_balance":0,"rio_lock":0,"ktc_balance":0,"ktc_lock":0,"pgc_balance":0,"pgc_lock":0,"mryc_balance":0,"mryc_lock":0,"eth_balance":0,"eth_lock":0,"etc_balance":0,"etc_lock":0,"dnc_balance":0,"dnc_lock":0,"gooc_balance":0,"gooc_lock":0,"xrp_balance":0,"xrp_lock":0,"nxt_balance":0,"nxt_lock":0,"lsk_balance":0,"lsk_lock":0,"xas_balance":0,"xas_lock":0,"peb_balance":0,"peb_lock":0,"nhgh_balance":0,"nhgh_lock":0,"xsgs_balance":0,"xsgs_lock":0,"ans_balance":0,"ans_lock":0,"bts_balance":0,"bts_lock":0,"cny_balance":0,"cny_lock":0}











 
聚币网个人邀请码:
514330
 
还没注册可以拿去用,对于我而言可以拿到你们交易费用的50%,不过一般交易费除非是超级大户,一般散户都很少。千分之一的交易手续费。
 
欢迎一起讨论:
Email:weigesysu@qq.com

 原创内容,转载请注明出处
http://30daydo.com/article/181 
  查看全部
******* 2018.14 更新 ***********
现在聚币网已经被关闭了,但是所有的币都可以转移到CoinEgg网了,币种和以前一模一样,只是用户参与度减少了很多,市场不是一个有效的市场,但是这对于操盘手来说,更加是一个收益大的地方。
使用下面链接注册后,用户可以返30%的佣金。 其实也无所谓,佣金不会很多,一次也就几分钱到几毛钱,自己去官网注册也可以。看个人心情啦。
 
http://www.coinegg.com/user/register?inv=7d91a
 
 后续会就coinegg写一个自动交易的系统出来
 

******* 8.28 更新 ***********
不少人反应签名不通过,经过调试,发现是加密前的字符拼接的顺序问题,这个拼接顺序要和你post上去的顺序要一致,才能通过。如果出现104的返回代码,说明是你的顺序问题,说明你的签名没有成功。
 
贴代码说明下: 使用字典循环,就可以知道正确的拼接顺序。 下面的代码是获取成交订单的。
    def Trade_list(self, coin):
'''
Trade_list(挂单查询)
您指定时间后的挂单,可以根据类型查询,比如查看正在挂单和全部挂单
Path:/api/v1/trade_list/
Request类型:POST
参数
key - API key
signature - signature
nonce - nonce
since - unix timestamp(utc timezone) default == 0, i.e. 返回所有
coin - 币种简称,例如btc、ltc、xas
type - 挂单类型[open:正在挂单, all:所有挂单]

返回JSON dictionary
id - 挂单ID
datetime - date and time
type - "buy" or "sell"
price - price
amount_original - 下单时数量
amount_outstanding - 当前剩余数量
'''
url = self.host + '/api/v1/trade_list/'
time.sleep(random.random())
nonce = self.get_nonce_time()
types = 'all'
since = 0
parameters = {'key': self.public_key, 'nonce': str(nonce), 'type': types, 'coin': coin, 'signature': ''}
# print parameters
post_data = ''
for k, v in parameters.items():
if not isinstance(v, str):
#if type(v) is not types.StringType:
v = str(v)
post_data = post_data + k
post_data = post_data + '=' + v + '&'

#print 'post-data:\n',post_data
post_data = post_data[:-1]
post_data = post_data.replace('&signature=', '')
#print post_data

signature = hmac.new(self.md5, post_data, digestmod=hashlib.sha256).digest()
sig = self.toHex(signature)
parameters['signature'] = sig
#print parameters
r = requests.post(url=url, data=parameters)
s = r.json()
#print s
return s

 
如果还是没有解决的话就网站内私信我看看问题所在。

******************************************* 原文内容 ***************************************************
 

 官方有API的文档,可是这个文档就像一个草稿一样,两个基本例子都没有。 所以自己摸索一下,自己写一个现成的例子给大家,可以有个参考。 下面的例子亲测成功。 
 
首先看一下官方的API文档:


一、API使用说明

1、请求过程说明

1.1 构造请求数据,用户数据按照Jubi提供的接口规则,通过程序生成签名和要传输给Jubi的数据集合;

1.2 发送请求数据,把构造完成的数据集合通过POST/GET提交的方式传递给Jubi;

1.3 Jubi对请求数据进行处理,服务器在接收到请求后,会首先进行安全校验,验证通过后便会处理该次发送过来的请求;

1.4 返回响应结果数据,Jubi把响应结果以JSON的格式反馈给用户,具体的响应格式,错误代码参见接口部分;

1.5 对获取的返回结果数据进行处理;

2、安全认证

所有的private API都需要经过认证

Api的申请可以到财务中心 -> API,申请得到私钥和公钥,私钥Jubi将不做储存,一旦丢失将无法找回

注意:请勿向任何人泄露这两个参数,这像您的密码一样重要

2.签名机制

每次请求private api 都需要验证签名,发送的参数示例:

$param = array(

amount => 1,

price => 10000,

type => 'buy',

nonce => 141377098123

key => 5zi7w-4mnes-swmc4-egg9b-f2iqw-396z4-g541b

signature => 459c69d25c496765191582d9611028b9974830e9dfafd762854669809290ed82

);

nonce 可以理解为一个递增的整数:http://zh.wikipedia.org/wiki/Nonce

key 是申请到的公钥

signature是签名,是将amount price type nonce key等参数通过'&'字符连接起来通过md5(私钥)为key进行sha256算法加密得到的值.

 


 
 
  
首先聚币的行情是使用网络爬虫获取的,而说明中给出了一系列的参数,你需要做的就是把这些参数填充上去。
 
如果你只是想要获取行情,那么事情容易很多。
    def real_time_ticker(coin):
url = 'https://www.jubi.com/api/v1/ticker/'
try:
data = requests.post(url, data={'coin': coin}).json()

except Exception ,e:
print e
return data

上面代码展示的时候获取实时的行情。委一和买一的价格,数量,和当前成交的数量,价格。
 按照上面的格式,把参数coin填上去,比如要获取泽塔币, real_time_ticker('zet') 就会返回获取的数据。
{u'sell': u'0.179000', u'volume': 21828245.102822, u'buy': u'0.175010', u'last': u'0.179000', u'vol': 108290769.9171, u'high': u'0.289000', u'low': u'0.119141'}

 
 
所有的private API都需要经过认证, 就是说如果你要进行交易,委托,下单,你就需要使用私钥和公钥,并进行一系列的加密。


每次请求private api 都需要验证签名,发送的参数示例:

$param = array(

amount => 1,

price => 10000,

type => 'buy',

nonce => 141377098123

key => 5zi7w-4mnes-swmc4-egg9b-f2iqw-396z4-g541b

signature => 459c69d25c496765191582d9611028b9974830e9dfafd762854669809290ed82

);

nonce 可以理解为一个递增的整数:http://zh.wikipedia.org/wiki/Nonce

key 是申请到的公钥

signature是签名,是将amount price type nonce key等参数通过'&'字符连接起来通过md5(私钥)为key进行sha256算法加密得到的值.


 
 
比如下单:


Trade_add(下单)
Path:/api/v1/trade_add/
Request类型:POST
 
参数
key - API key
signature - signature
nonce - nonce
amount - 购买数量
price - 购买价格
type - 买单或者卖单
coin - 币种简称,例如btc、ltc、xas
id - 挂单ID
result - true(成功), false(失败)
{"result":true, "id":"11"}
 
返回JSON dictionary
id - 挂单ID
result - true(成功), false(失败)
 
返回结果示例:
{"result":true, "id":"11"}
 



首先解决nonce。
 
在维基百科中
在安全工程中,Nonce是一个在加密通信只能使用一次的数字。在认证协议中,它往往是一个随机或伪随机数,以避免重放攻击。Nonce也用于流密码以确保安全。如果需要使用相同的密钥加密一个以上的消息,就需要Nonce来确保不同的消息与该密钥加密的密钥流不同。
 
结合stackoverflow, nonce只是一个12位的随机数。
可以用以下方法获得这个随机数
    def get_nonce(self):
lens=12
return ''.join([str(random.randint(0, 9)) for i in range(lens)])

 聚币中的nonce的位数是12位,所以lens定义为12
 
或者可以直接用时间函数生成:
    def get_nonce_time(self):
lens = 12
curr_stamp = time.time()*100
nonece=int(curr_stamp)
return nonece

 
然后是signature。
signature是签名,是将amount price type nonce key等参数通过'&'字符连接起来通过md5(私钥)为key进行sha256算法加密得到的值.

先把私钥进行md5处理
    def getHash(self,s):
m=hashlib.md5()
m.update(s)
return m.hexdigest()

只要把私钥传入函数getHash就可以得到一个md5处理过的字符串。
 
私钥是聚币网给每个用户分配的字符串,是唯一的,这里假设为private_key=123456789吧,具体是多少,在你的聚币网设置里面可以找到。
sha_256key=self.getHash(private_key)
 
按照要求吧 你要post的数据字符串连起来
nonce=self.get_nonce_time
type='buy'
amount='10000'
key='xxxxxxxxxxx‘ #这个是聚币网给你的公钥,同样在设置里头可以找到
price='10' #你要设置的价格为10
coin='zet'
message = "amount=“+amount+”&nonce="+str(nonce)+"&type="+type+"&key="+key+'&price="+price+"&coin"+coin

signature = hmac.new(sha_256key, message, digestmod=hashlib.sha256).digest()

这样获得signature之后,就可以通过签名来进行post操作。

data_wrap={'nonce':nonce,'key':key_value,'signature':signature}

js=requests.post(url,data=data_wrap).json()

 
如果直接按照上面的代码去获取账户相关信息或者去挂单的话,会返回104的签名错误。 经过不断的排查,发现是signature的字符格式的问题。
 
构造一个str转换格式的函数:
    def toHex(self,str):
lst =
for ch in str:
hv = hex(ord(ch)).replace('0x', '')
if len(hv) == 1:
hv = '0' + hv
lst.append(hv)
return reduce(lambda x, y: x + y, lst)
这个函数的作用就是把原来十六进制格式的字符完全转化成十六进制,把前面的0x去掉,不足2位的补全为2位。
把经过处理的signature进行格式转换后,几次提交,终于发现可以获取到用户的账户信息,进行下单,撤单,等操作。
 
 
 
下面是一个获取账户信息的代码段:
    def getAccount(self):
url='https://www.jubi.com/api/v1/balance/'

nonce_value=self.get_nonce_time()
print nonce_value
key_value=self.public_key
private_key=self.private_key

s='nonce='+str(nonce_value)+'&'+'key='+key_value

print s

#signature是签名,是将amount price type nonce key等参数通过'&'字符连接起来通过md5(私钥)为key进行sha256算法加密得到的值.
md5=self.getHash(private_key)
print md5
print type(md5)

msg=bytes(s).encode('utf-8')
key=bytes(md5).encode('utf-8')
signature =hmac.new(key,msg,digestmod=hashlib.sha256).digest()
print signature
print type(signature)
sig=self.toHex(signature)

print sig
data_wrap={'nonce':nonce_value,'key':key_value,'signature':sig}

print data_wrap

data_en=urllib.urlencode(data_wrap)
req=urllib2.Request(url,data=data_en)
resp=urllib2.urlopen(req).read()
print resp


def toHex(self,str):
lst =
for ch in str:
hv = hex(ord(ch)).replace('0x', '')
if len(hv) == 1:
hv = '0' + hv
lst.append(hv)
return reduce(lambda x, y: x + y, lst)

 
以上的代码运行后返回一下账户信息:
{"uid":123456,"nameauth":1,"moflag":1,"asset":,"btc_balance":0,"btc_lock":0,"drk_balance":0,"drk_lock":0,"blk_balance":0,"blk_lock":0,"vrc_balance":0,"vrc_lock":0,"tfc_balance":0,"tfc_lock":0,"jbc_balance":0,"jbc_lock":0,"ltc_balance":0,"ltc_lock":0,"doge_balance":0,"doge_lock":0,"xpm_balance":0,"xpm_lock":0,"ppc_balance":0,"ppc_lock":0,"wdc_balance":0,"wdc_lock":0,"vtc_balance":0,"vtc_lock":0,"max_balance":0,"max_lock":0,"ifc_balance":0,"ifc_lock":0,"zcc_balance":0,"zcc_lock":0,"zet_balance":0,"zet_lock":0,"eac_balance":0,"eac_lock":0,"fz_balance":0,"fz_lock":0,"skt_balance":0,"skt_lock":0,"plc_balance":0,"plc_lock":0,"mtc_balance":0,"mtc_lock":0,"qec_balance":0,"qec_lock":0,"lkc_balance":10,"lkc_lock":0,"met_balance":0,"met_lock":0,"ytc_balance":0,"ytc_lock":0,"hlb_balance":0,"hlb_lock":0,"game_balance":0,"game_lock":0,"rss_balance":0,"rss_lock":0,"rio_balance":0,"rio_lock":0,"ktc_balance":0,"ktc_lock":0,"pgc_balance":0,"pgc_lock":0,"mryc_balance":0,"mryc_lock":0,"eth_balance":0,"eth_lock":0,"etc_balance":0,"etc_lock":0,"dnc_balance":0,"dnc_lock":0,"gooc_balance":0,"gooc_lock":0,"xrp_balance":0,"xrp_lock":0,"nxt_balance":0,"nxt_lock":0,"lsk_balance":0,"lsk_lock":0,"xas_balance":0,"xas_lock":0,"peb_balance":0,"peb_lock":0,"nhgh_balance":0,"nhgh_lock":0,"xsgs_balance":0,"xsgs_lock":0,"ans_balance":0,"ans_lock":0,"bts_balance":0,"bts_lock":0,"cny_balance":0,"cny_lock":0}











 
聚币网个人邀请码:
514330
 
还没注册可以拿去用,对于我而言可以拿到你们交易费用的50%,不过一般交易费除非是超级大户,一般散户都很少。千分之一的交易手续费。
 
欢迎一起讨论:
Email:weigesysu@qq.com

 原创内容,转载请注明出处
http://30daydo.com/article/181 
 

python 获取 中国证券网 的公告

python爬虫李魔佛 发表了文章 • 11 个评论 • 13881 次浏览 • 2016-06-30 15:45 • 来自相关话题

中国证券网: http://ggjd.cnstock.com/
这个网站的公告会比同花顺东方财富的早一点,而且还出现过早上中国证券网已经发了公告,而东财却拿去做午间公告,以至于可以提前获取公告提前埋伏。
 
现在程序自动把抓取的公告存入本网站中:http://30daydo.com/news.php 
每天早上8:30更新一次。
 
生成的公告保存在stock/文件夹下,以日期命名。 下面脚本是循坏检测,如果有新的公告就会继续生成。
 
默认保存前3页的公告。(一次过太多页会被网站暂时屏蔽几分钟)。 代码以及使用了切换header来躲避网站的封杀。
 
修改
getInfo(3) 里面的数字就可以抓取前面某页数据
 
 




__author__ = 'rocchen'
# working v1.0
from bs4 import BeautifulSoup
import urllib2, datetime, time, codecs, cookielib, random, threading
import os,sys


def getInfo(max_index_user=5):
stock_news_site =
"http://ggjd.cnstock.com/gglist/search/ggkx/"

my_userAgent = [
'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50',
'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50',
'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0',
'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0)',
'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)',
'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:2.0.1) Gecko/20100101 Firefox/4.0.1',
'Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1',
'Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; en) Presto/2.8.131 Version/11.11',
'Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11',
'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Maxthon 2.0)',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11',
'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; 360SE)',
'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SE 2.X MetaSr 1.0; SE 2.X MetaSr 1.0; .NET CLR 2.0.50727; SE 2.X MetaSr 1.0)']
index = 0
max_index = max_index_user
num = 1
temp_time = time.strftime("[%Y-%m-%d]-[%H-%M]", time.localtime())

store_filename = "StockNews-%s.log" % temp_time
fOpen = codecs.open(store_filename, 'w', 'utf-8')

while index < max_index:
user_agent = random.choice(my_userAgent)
# print user_agent
company_news_site = stock_news_site + str(index)
# content = urllib2.urlopen(company_news_site)
headers = {'User-Agent': user_agent, 'Host': "ggjd.cnstock.com", 'DNT': '1',
'Accept': 'text/html, application/xhtml+xml, */*', }
req = urllib2.Request(url=company_news_site, headers=headers)
resp = None
raw_content = ""
try:
resp = urllib2.urlopen(req, timeout=30)

except urllib2.HTTPError as e:
e.fp.read()
except urllib2.URLError as e:
if hasattr(e, 'code'):
print "error code %d" % e.code
elif hasattr(e, 'reason'):
print "error reason %s " % e.reason

finally:
if resp:
raw_content = resp.read()
time.sleep(2)
resp.close()

soup = BeautifulSoup(raw_content, "html.parser")
all_content = soup.find_all("span", "time")

for i in all_content:
news_time = i.string
node = i.next_sibling
str_temp = "No.%s \n%s\t%s\n---> %s \n\n" % (str(num), news_time, node['title'], node['href'])
#print "inside %d" %num
#print str_temp
fOpen.write(str_temp)
num = num + 1

#print "index %d" %index
index = index + 1

fOpen.close()


def execute_task(n=60):
period = int(n)
while True:
print datetime.datetime.now()
getInfo(3)

time.sleep(60 * period)



if __name__ == "__main__":

sub_folder = os.path.join(os.getcwd(), "stock")
if not os.path.exists(sub_folder):
os.mkdir(sub_folder)
os.chdir(sub_folder)
start_time = time.time() # user can change the max index number getInfo(10), by default is getInfo(5)
if len(sys.argv) <2:
n = raw_input("Input Period : ? mins to download every cycle")
else:
n=int(sys.argv[1])
execute_task(n)
end_time = time.time()
print "Total time: %s s." % str(round((end_time - start_time), 4))


 
github:https://github.com/Rockyzsu/cnstock
  查看全部
中国证券网: http://ggjd.cnstock.com/
这个网站的公告会比同花顺东方财富的早一点,而且还出现过早上中国证券网已经发了公告,而东财却拿去做午间公告,以至于可以提前获取公告提前埋伏。
 
现在程序自动把抓取的公告存入本网站中:http://30daydo.com/news.php 
每天早上8:30更新一次。
 
生成的公告保存在stock/文件夹下,以日期命名。 下面脚本是循坏检测,如果有新的公告就会继续生成。
 
默认保存前3页的公告。(一次过太多页会被网站暂时屏蔽几分钟)。 代码以及使用了切换header来躲避网站的封杀。
 
修改
getInfo(3) 里面的数字就可以抓取前面某页数据
 
 

公告.PNG
__author__ = 'rocchen'
# working v1.0
from bs4 import BeautifulSoup
import urllib2, datetime, time, codecs, cookielib, random, threading
import os,sys


def getInfo(max_index_user=5):
stock_news_site =
"http://ggjd.cnstock.com/gglist/search/ggkx/"

my_userAgent = [
'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50',
'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50',
'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0',
'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0)',
'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)',
'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:2.0.1) Gecko/20100101 Firefox/4.0.1',
'Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1',
'Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; en) Presto/2.8.131 Version/11.11',
'Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11',
'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Maxthon 2.0)',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11',
'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; 360SE)',
'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SE 2.X MetaSr 1.0; SE 2.X MetaSr 1.0; .NET CLR 2.0.50727; SE 2.X MetaSr 1.0)']
index = 0
max_index = max_index_user
num = 1
temp_time = time.strftime("[%Y-%m-%d]-[%H-%M]", time.localtime())

store_filename = "StockNews-%s.log" % temp_time
fOpen = codecs.open(store_filename, 'w', 'utf-8')

while index < max_index:
user_agent = random.choice(my_userAgent)
# print user_agent
company_news_site = stock_news_site + str(index)
# content = urllib2.urlopen(company_news_site)
headers = {'User-Agent': user_agent, 'Host': "ggjd.cnstock.com", 'DNT': '1',
'Accept': 'text/html, application/xhtml+xml, */*', }
req = urllib2.Request(url=company_news_site, headers=headers)
resp = None
raw_content = ""
try:
resp = urllib2.urlopen(req, timeout=30)

except urllib2.HTTPError as e:
e.fp.read()
except urllib2.URLError as e:
if hasattr(e, 'code'):
print "error code %d" % e.code
elif hasattr(e, 'reason'):
print "error reason %s " % e.reason

finally:
if resp:
raw_content = resp.read()
time.sleep(2)
resp.close()

soup = BeautifulSoup(raw_content, "html.parser")
all_content = soup.find_all("span", "time")

for i in all_content:
news_time = i.string
node = i.next_sibling
str_temp = "No.%s \n%s\t%s\n---> %s \n\n" % (str(num), news_time, node['title'], node['href'])
#print "inside %d" %num
#print str_temp
fOpen.write(str_temp)
num = num + 1

#print "index %d" %index
index = index + 1

fOpen.close()


def execute_task(n=60):
period = int(n)
while True:
print datetime.datetime.now()
getInfo(3)

time.sleep(60 * period)



if __name__ == "__main__":

sub_folder = os.path.join(os.getcwd(), "stock")
if not os.path.exists(sub_folder):
os.mkdir(sub_folder)
os.chdir(sub_folder)
start_time = time.time() # user can change the max index number getInfo(10), by default is getInfo(5)
if len(sys.argv) <2:
n = raw_input("Input Period : ? mins to download every cycle")
else:
n=int(sys.argv[1])
execute_task(n)
end_time = time.time()
print "Total time: %s s." % str(round((end_time - start_time), 4))


 
github:https://github.com/Rockyzsu/cnstock
 

python 批量获取色影无忌 获奖图片

python爬虫李魔佛 发表了文章 • 6 个评论 • 10698 次浏览 • 2016-06-29 16:41 • 来自相关话题

色影无忌上的图片很多都可以直接拿来做壁纸的,而且发布面不会太广,基本不会和市面上大部分的壁纸或者图片素材重复。 关键还没有水印。 这么良心的图片服务商哪里找呀~~
 

 





 
不多说,直接来代码:#-*-coding=utf-8-*-
__author__ = 'rocky chen'
from bs4 import BeautifulSoup
import urllib2,sys,StringIO,gzip,time,random,re,urllib,os
reload(sys)
sys.setdefaultencoding('utf-8')
class Xitek():
    def __init__(self):
        self.url="http://photo.xitek.com/"
        user_agent="Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)"
        self.headers={"User-Agent":user_agent}
        self.last_page=self.__get_last_page()


    def __get_last_page(self):
        html=self.__getContentAuto(self.url)
        bs=BeautifulSoup(html,"html.parser")
        page=bs.find_all('a',class_="blast")
        last_page=page[0]['href'].split('/')[-1]
        return int(last_page)


    def __getContentAuto(self,url):
        req=urllib2.Request(url,headers=self.headers)
        resp=urllib2.urlopen(req)
        #time.sleep(2*random.random())
        content=resp.read()
        info=resp.info().get("Content-Encoding")
        if info==None:
            return content
        else:
            t=StringIO.StringIO(content)
            gziper=gzip.GzipFile(fileobj=t)
            html = gziper.read()
            return html

    #def __getFileName(self,stream):


    def __download(self,url):
        p=re.compile(r'href="(/photoid/\d+)"')
        #html=self.__getContentNoZip(url)

        html=self.__getContentAuto(url)

        content = p.findall(html)
        for i in content:
            print i

            photoid=self.__getContentAuto(self.url+i)
            bs=BeautifulSoup(photoid,"html.parser")
            final_link=bs.find('img',class_="mimg")['src']
            print final_link
            #pic_stream=self.__getContentAuto(final_link)
            title=bs.title.string.strip()
            filename = re.sub('[\/:*?"<>|]', '-', title)
            filename=filename+'.jpg'
            urllib.urlretrieve(final_link,filename)
            #f=open(filename,'w')
            #f.write(pic_stream)
            #f.close()
        #print html
        #bs=BeautifulSoup(html,"html.parser")
        #content=bs.find_all(p)
        #for i in content:
        #    print i
        '''
        print bs.title
        element_link=bs.find_all('div',class_="element")
        print len(element_link)
        k=1
        for href in element_link:

            #print type(href)
            #print href.tag
        '''
        '''
            if href.children[0]:
                print href.children[0]
        '''
        '''
            t=0

            for i in href.children:
                #if i.a:
                if t==0:
                    #print k
                    if i['href']
                    print link

                        if p.findall(link):
                            full_path=self.url[0:len(self.url)-1]+link
                            sub_html=self.__getContent(full_path)
                            bs=BeautifulSoup(sub_html,"html.parser")
                            final_link=bs.find('img',class_="mimg")['src']
                            #time.sleep(2*random.random())
                            print final_link
                    #k=k+1
                #print type(i)
                #print i.tag
                #if hasattr(i,"href"):
                    #print i['href']
                #print i.tag
                t=t+1
                #print "*"

        '''

        '''
            if href:
                if href.children:
                    print href.children[0]
        '''
            #print "one element link"



    def getPhoto(self):

        start=0
        #use style/0
        photo_url="http://photo.xitek.com/style/0/p/"
        for i in range(start,self.last_page+1):
            url=photo_url+str(i)
            print url
            #time.sleep(1)
            self.__download(url)

        '''
        url="http://photo.xitek.com/style/0/p/10"
        self.__download(url)
        '''
        #url="http://photo.xitek.com/style/0/p/0"
        #html=self.__getContent(url)
        #url="http://photo.xitek.com/"
        #html=self.__getContentNoZip(url)
        #print html
        #'''
def main():
    sub_folder = os.path.join(os.getcwd(), "content")
    if not os.path.exists(sub_folder):
        os.mkdir(sub_folder)
    os.chdir(sub_folder)
    obj=Xitek()
    obj.getPhoto()


if __name__=="__main__":
    main()








下载后在content文件夹下会自动抓取所有图片。 (色影无忌的服务器没有做任何的屏蔽处理,所以脚本不能跑那么快,可以适当调用sleep函数,不要让服务器压力那么大)
 
已经下载好的图片:





 
 
github: https://github.com/Rockyzsu/fetchXitek   (欢迎前来star) 查看全部
色影无忌上的图片很多都可以直接拿来做壁纸的,而且发布面不会太广,基本不会和市面上大部分的壁纸或者图片素材重复。 关键还没有水印。 这么良心的图片服务商哪里找呀~~
 

 

色影无忌_副本.png

 
不多说,直接来代码:
#-*-coding=utf-8-*-
__author__ = 'rocky chen'
from bs4 import BeautifulSoup
import urllib2,sys,StringIO,gzip,time,random,re,urllib,os
reload(sys)
sys.setdefaultencoding('utf-8')
class Xitek():
    def __init__(self):
        self.url="http://photo.xitek.com/"
        user_agent="Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)"
        self.headers={"User-Agent":user_agent}
        self.last_page=self.__get_last_page()


    def __get_last_page(self):
        html=self.__getContentAuto(self.url)
        bs=BeautifulSoup(html,"html.parser")
        page=bs.find_all('a',class_="blast")
        last_page=page[0]['href'].split('/')[-1]
        return int(last_page)


    def __getContentAuto(self,url):
        req=urllib2.Request(url,headers=self.headers)
        resp=urllib2.urlopen(req)
        #time.sleep(2*random.random())
        content=resp.read()
        info=resp.info().get("Content-Encoding")
        if info==None:
            return content
        else:
            t=StringIO.StringIO(content)
            gziper=gzip.GzipFile(fileobj=t)
            html = gziper.read()
            return html

    #def __getFileName(self,stream):


    def __download(self,url):
        p=re.compile(r'href="(/photoid/\d+)"')
        #html=self.__getContentNoZip(url)

        html=self.__getContentAuto(url)

        content = p.findall(html)
        for i in content:
            print i

            photoid=self.__getContentAuto(self.url+i)
            bs=BeautifulSoup(photoid,"html.parser")
            final_link=bs.find('img',class_="mimg")['src']
            print final_link
            #pic_stream=self.__getContentAuto(final_link)
            title=bs.title.string.strip()
            filename = re.sub('[\/:*?"<>|]', '-', title)
            filename=filename+'.jpg'
            urllib.urlretrieve(final_link,filename)
            #f=open(filename,'w')
            #f.write(pic_stream)
            #f.close()
        #print html
        #bs=BeautifulSoup(html,"html.parser")
        #content=bs.find_all(p)
        #for i in content:
        #    print i
        '''
        print bs.title
        element_link=bs.find_all('div',class_="element")
        print len(element_link)
        k=1
        for href in element_link:

            #print type(href)
            #print href.tag
        '''
        '''
            if href.children[0]:
                print href.children[0]
        '''
        '''
            t=0

            for i in href.children:
                #if i.a:
                if t==0:
                    #print k
                    if i['href']
                    print link

                        if p.findall(link):
                            full_path=self.url[0:len(self.url)-1]+link
                            sub_html=self.__getContent(full_path)
                            bs=BeautifulSoup(sub_html,"html.parser")
                            final_link=bs.find('img',class_="mimg")['src']
                            #time.sleep(2*random.random())
                            print final_link
                    #k=k+1
                #print type(i)
                #print i.tag
                #if hasattr(i,"href"):
                    #print i['href']
                #print i.tag
                t=t+1
                #print "*"

        '''

        '''
            if href:
                if href.children:
                    print href.children[0]
        '''
            #print "one element link"



    def getPhoto(self):

        start=0
        #use style/0
        photo_url="http://photo.xitek.com/style/0/p/"
        for i in range(start,self.last_page+1):
            url=photo_url+str(i)
            print url
            #time.sleep(1)
            self.__download(url)

        '''
        url="http://photo.xitek.com/style/0/p/10"
        self.__download(url)
        '''
        #url="http://photo.xitek.com/style/0/p/0"
        #html=self.__getContent(url)
        #url="http://photo.xitek.com/"
        #html=self.__getContentNoZip(url)
        #print html
        #'''
def main():
    sub_folder = os.path.join(os.getcwd(), "content")
    if not os.path.exists(sub_folder):
        os.mkdir(sub_folder)
    os.chdir(sub_folder)
    obj=Xitek()
    obj.getPhoto()


if __name__=="__main__":
    main()








下载后在content文件夹下会自动抓取所有图片。 (色影无忌的服务器没有做任何的屏蔽处理,所以脚本不能跑那么快,可以适当调用sleep函数,不要让服务器压力那么大)
 
已经下载好的图片:

色影无忌2_副本1.png

 
 
github: https://github.com/Rockyzsu/fetchXitek   (欢迎前来star)

抓取 知乎日报 中的 大误 系类文章,生成电子书推送到kindle

python爬虫李魔佛 发表了文章 • 0 个评论 • 3805 次浏览 • 2016-06-12 08:52 • 来自相关话题

无意中看了知乎日报的大误系列的一篇文章,之后就停不下来了,大误是虚构故事,知乎上神人虚构故事的功力要高于网络上的很多写手啊!! 看的欲罢不能,不过还是那句,手机屏幕太小,连续看几个小时很疲劳,而且每次都要联网去看。 
 
所以写了下面的python脚本,一劳永逸。 脚本抓取大误从开始到现在的所有文章,并推送到你自己的kindle账号。
 




# -*- coding=utf-8 -*-
__author__ = 'rocky @ www.30daydo.com'
import urllib2, re, os, codecs,sys,datetime
from bs4 import BeautifulSoup
# example https://zhhrb.sinaapp.com/index.php?date=20160610
from mail_template import MailAtt
reload(sys)
sys.setdefaultencoding('utf-8')

def save2file(filename, content):
filename = filename + ".txt"
f = codecs.open(filename, 'a', encoding='utf-8')
f.write(content)
f.close()


def getPost(date_time, filter_p):
url = 'https://zhhrb.sinaapp.com/index.php?date=' + date_time
user_agent = "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)"
header = {"User-Agent": user_agent}
req = urllib2.Request(url, headers=header)
resp = urllib2.urlopen(req)
content = resp.read()
p = re.compile('<h2 class="question-title">(.*)</h2></br></a>')
result = re.findall(p, content)
count = -1
row = -1
for i in result:
#print i
return_content = re.findall(filter_p, i)

if return_content:
row = count
break
#print return_content[0]
count = count + 1
#print row
if row == -1:
return 0
link_p = re.compile('<a href="(.*)" target="_blank" rel="nofollow">')
link_result = re.findall(link_p, content)[row + 1]
print link_result
result_req = urllib2.Request(link_result, headers=header)
result_resp = urllib2.urlopen(result_req)
#result_content= result_resp.read()
#print result_content

bs = BeautifulSoup(result_resp, "html.parser")
title = bs.title.string.strip()
#print title
filename = re.sub('[\/:*?"<>|]', '-', title)
print filename
print date_time
save2file(filename, title)
save2file(filename, "\n\n\n\n--------------------%s Detail----------------------\n\n" %date_time)

detail_content = bs.find_all('div', class_='content')

for i in detail_content:
#print i
save2file(filename,"\n\n-------------------------answer -------------------------\n\n")
for j in i.strings:

save2file(filename, j)

smtp_server = 'smtp.126.com'
from_mail = sys.argv[1]
password = sys.argv[2]
to_mail = 'jinweizsu@kindle.cn'
send_kindle = MailAtt(smtp_server, from_mail, password, to_mail)
send_kindle.send_txt(filename)


def main():
sub_folder = os.path.join(os.getcwd(), "content")
if not os.path.exists(sub_folder):
os.mkdir(sub_folder)
os.chdir(sub_folder)


date_time = '20160611'
filter_p = re.compile('大误.*')
ori_day=datetime.date(datetime.date.today().year,01,01)
t=datetime.date(datetime.date.today().year,datetime.date.today().month,datetime.date.today().day)
delta=(t-ori_day).days
print delta
for i in range(delta):
day=datetime.date(datetime.date.today().year,01,01)+datetime.timedelta(i)
getPost(day.strftime("%Y%m%d"),filter_p)
#getPost(date_time, filter_p)

if __name__ == "__main__":
main()




github: https://github.com/Rockyzsu/zhihu_daily__kindle
 
上面的代码可以稍作修改,就可以抓取瞎扯或者深夜食堂的系列文章。
 
附福利:
http://pan.baidu.com/s/1kVewz59
所有的知乎日报的大误文章。(截止2016/6/12日) 查看全部
无意中看了知乎日报的大误系列的一篇文章,之后就停不下来了,大误是虚构故事,知乎上神人虚构故事的功力要高于网络上的很多写手啊!! 看的欲罢不能,不过还是那句,手机屏幕太小,连续看几个小时很疲劳,而且每次都要联网去看。 
 
所以写了下面的python脚本,一劳永逸。 脚本抓取大误从开始到现在的所有文章,并推送到你自己的kindle账号。
 

大误.JPG
# -*- coding=utf-8 -*-
__author__ = 'rocky @ www.30daydo.com'
import urllib2, re, os, codecs,sys,datetime
from bs4 import BeautifulSoup
# example https://zhhrb.sinaapp.com/index.php?date=20160610
from mail_template import MailAtt
reload(sys)
sys.setdefaultencoding('utf-8')

def save2file(filename, content):
filename = filename + ".txt"
f = codecs.open(filename, 'a', encoding='utf-8')
f.write(content)
f.close()


def getPost(date_time, filter_p):
url = 'https://zhhrb.sinaapp.com/index.php?date=' + date_time
user_agent = "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)"
header = {"User-Agent": user_agent}
req = urllib2.Request(url, headers=header)
resp = urllib2.urlopen(req)
content = resp.read()
p = re.compile('<h2 class="question-title">(.*)</h2></br></a>')
result = re.findall(p, content)
count = -1
row = -1
for i in result:
#print i
return_content = re.findall(filter_p, i)

if return_content:
row = count
break
#print return_content[0]
count = count + 1
#print row
if row == -1:
return 0
link_p = re.compile('<a href="(.*)" target="_blank" rel="nofollow">')
link_result = re.findall(link_p, content)[row + 1]
print link_result
result_req = urllib2.Request(link_result, headers=header)
result_resp = urllib2.urlopen(result_req)
#result_content= result_resp.read()
#print result_content

bs = BeautifulSoup(result_resp, "html.parser")
title = bs.title.string.strip()
#print title
filename = re.sub('[\/:*?"<>|]', '-', title)
print filename
print date_time
save2file(filename, title)
save2file(filename, "\n\n\n\n--------------------%s Detail----------------------\n\n" %date_time)

detail_content = bs.find_all('div', class_='content')

for i in detail_content:
#print i
save2file(filename,"\n\n-------------------------answer -------------------------\n\n")
for j in i.strings:

save2file(filename, j)

smtp_server = 'smtp.126.com'
from_mail = sys.argv[1]
password = sys.argv[2]
to_mail = 'jinweizsu@kindle.cn'
send_kindle = MailAtt(smtp_server, from_mail, password, to_mail)
send_kindle.send_txt(filename)


def main():
sub_folder = os.path.join(os.getcwd(), "content")
if not os.path.exists(sub_folder):
os.mkdir(sub_folder)
os.chdir(sub_folder)


date_time = '20160611'
filter_p = re.compile('大误.*')
ori_day=datetime.date(datetime.date.today().year,01,01)
t=datetime.date(datetime.date.today().year,datetime.date.today().month,datetime.date.today().day)
delta=(t-ori_day).days
print delta
for i in range(delta):
day=datetime.date(datetime.date.today().year,01,01)+datetime.timedelta(i)
getPost(day.strftime("%Y%m%d"),filter_p)
#getPost(date_time, filter_p)

if __name__ == "__main__":
main()




github: https://github.com/Rockyzsu/zhihu_daily__kindle
 
上面的代码可以稍作修改,就可以抓取瞎扯或者深夜食堂的系列文章。
 
附福利:
http://pan.baidu.com/s/1kVewz59
所有的知乎日报的大误文章。(截止2016/6/12日)

python 爆解zip压缩文件密码

python李魔佛 发表了文章 • 0 个评论 • 4382 次浏览 • 2016-06-09 21:43 • 来自相关话题

出于对百度网盘的不信任,加上前阵子百度会把一些侵犯版权的文件清理掉或者一些百度认为的尺度过大的文件进行替换,留下一个4秒的教育视频。 为何不提前告诉用户? 擅自把用户的资料删除,以后用户哪敢随意把资料上传上去呢?
 
抱怨归抱怨,由于现在金山快盘,新浪尾盘都关闭了,速度稍微快点的就只有百度网盘了。 所以我会把文件事先压缩好,加个密码然后上传。
 
可是有时候下载下来却忘记了解压密码,实在蛋疼。 所以需要自己逐一验证密码。 所以就写了这个小脚本。 很简单,没啥技术含量。 
 





 
 
代码就用图片吧,大家可以上机自己敲敲代码也好。 ctrl+v 代码 其实会养成一种惰性。
 
github: https://github.com/Rockyzsu/zip_crash
  查看全部
出于对百度网盘的不信任,加上前阵子百度会把一些侵犯版权的文件清理掉或者一些百度认为的尺度过大的文件进行替换,留下一个4秒的教育视频。 为何不提前告诉用户? 擅自把用户的资料删除,以后用户哪敢随意把资料上传上去呢?
 
抱怨归抱怨,由于现在金山快盘,新浪尾盘都关闭了,速度稍微快点的就只有百度网盘了。 所以我会把文件事先压缩好,加个密码然后上传。
 
可是有时候下载下来却忘记了解压密码,实在蛋疼。 所以需要自己逐一验证密码。 所以就写了这个小脚本。 很简单,没啥技术含量。 
 

crash_zip.JPG

 
 
代码就用图片吧,大家可以上机自己敲敲代码也好。 ctrl+v 代码 其实会养成一种惰性。
 
github: https://github.com/Rockyzsu/zip_crash
 

kindle收不到python推送的附件,但是同邮件的客户端可以。求助。

回复

python李魔佛 回复了问题 • 2 人关注 • 1 个回复 • 174 次浏览 • 2019-04-08 10:03 • 来自相关话题

RuntimeWarning: More than 20 figures have been opened.

回复

python李魔佛 回复了问题 • 1 人关注 • 1 个回复 • 4412 次浏览 • 2018-04-12 12:40 • 来自相关话题

真像雪球和知乎啊,这种是用python开发的后台吗,是用的什么框架呢

回复

默认分类kflyddn 回复了问题 • 3 人关注 • 3 个回复 • 3129 次浏览 • 2018-04-02 14:52 • 来自相关话题

运行python requests/urllib2/urllib3 需要sudo/root权限,为什么?

回复

python李魔佛 回复了问题 • 1 人关注 • 1 个回复 • 1971 次浏览 • 2018-01-10 23:36 • 来自相关话题

dataframe重新设置index

回复

python李魔佛 回复了问题 • 1 人关注 • 1 个回复 • 1809 次浏览 • 2017-05-09 23:05 • 来自相关话题

This probably means that Tcl wasn't installed properly [matplotlib][win7]

回复

python李魔佛 发起了问题 • 1 人关注 • 0 个回复 • 2632 次浏览 • 2017-05-05 17:25 • 来自相关话题

在学习装饰器的过程中遇到的奇怪的输出

回复

python李魔佛 发起了问题 • 1 人关注 • 0 个回复 • 1245 次浏览 • 2017-02-09 18:56 • 来自相关话题

pyautogui 在Windows下遇到 WindowsError: [Error 5] Access is denied. 错误

回复

python李魔佛 发起了问题 • 1 人关注 • 0 个回复 • 1634 次浏览 • 2017-01-16 02:03 • 来自相关话题

使用requests 访问https的网页 返回错误: InsecurePlatformWarning: A true SSLContext object is not available

回复

python李魔佛 回复了问题 • 1 人关注 • 1 个回复 • 3636 次浏览 • 2016-08-13 22:52 • 来自相关话题

datetime weekday (可以返回某天是一个星期的第几天)的源码只有return 0

回复

python李魔佛 回复了问题 • 1 人关注 • 1 个回复 • 1489 次浏览 • 2016-08-07 17:57 • 来自相关话题

conda无法在win10下用命令行切换虚拟环境

python李魔佛 发表了文章 • 0 个评论 • 34 次浏览 • 2019-06-11 10:04 • 来自相关话题

虚拟环境已经安装好了
然后在PowerShell下运行activate py2,没有任何反应。(powershell是win7后面系统的增强命令行)
后来使用系统原始的cmd命令行,在运行里面敲入cmd,然后重新执行activate py2,问题得到解决了。
原因是兼容问题。 查看全部
虚拟环境已经安装好了
然后在PowerShell下运行activate py2,没有任何反应。(powershell是win7后面系统的增强命令行)
后来使用系统原始的cmd命令行,在运行里面敲入cmd,然后重新执行activate py2,问题得到解决了。
原因是兼容问题。

requests直接post图片文件

python爬虫李魔佛 发表了文章 • 0 个评论 • 100 次浏览 • 2019-05-17 16:32 • 来自相关话题

代码如下:
file_path=r'9927_15562445086485238.png'
file=open(file_path, 'rb').read()
r=requests.post(url=code_url,data=file)
print(r.text) 查看全部
代码如下:
    file_path=r'9927_15562445086485238.png'
file=open(file_path, 'rb').read()
r=requests.post(url=code_url,data=file)
print(r.text)

python的mixin类

python李魔佛 发表了文章 • 0 个评论 • 104 次浏览 • 2019-05-16 16:30 • 来自相关话题

A mixin is a limited form of multiple inheritance.
 
maxin类似多重继承的一种限制形式:
 关于Python的Mixin模式

像C或C++这类语言都支持多重继承,一个子类可以有多个父类,这样的设计常被人诟病。因为继承应该是个”is-a”关系。比如轿车类继承交通工具类,因为轿车是一个(“is-a”)交通工具。一个物品不可能是多种不同的东西,因此就不应该存在多重继承。不过有没有这种情况,一个类的确是需要继承多个类呢?

答案是有,我们还是拿交通工具来举例子,民航飞机是一种交通工具,对于土豪们来说直升机也是一种交通工具。对于这两种交通工具,它们都有一个功能是飞行,但是轿车没有。所以,我们不可能将飞行功能写在交通工具这个父类中。但是如果民航飞机和直升机都各自写自己的飞行方法,又违背了代码尽可能重用的原则(如果以后飞行工具越来越多,那会出现许多重复代码)。怎么办,那就只好让这两种飞机同时继承交通工具以及飞行器两个父类,这样就出现了多重继承。这时又违背了继承必须是”is-a”关系。这个难题该怎么破?

不同的语言给出了不同的方法,让我们先来看下Java。Java提供了接口interface功能,来实现多重继承:public abstract class Vehicle {
}

public interface Flyable {
public void fly();
}

public class FlyableImpl implements Flyable {
public void fly() {
System.out.println("I am flying");
}
}

public class Airplane extends Vehicle implements Flyable {
private flyable;

public Airplane() {
flyable = new FlyableImpl();
}

public void fly() {
flyable.fly();
}
}

现在我们的飞机同时具有了交通工具及飞行器两种属性,而且我们不需要重写飞行器中的飞行方法,同时我们没有破坏单一继承的原则。飞机就是一种交通工具,可飞行的能力是是飞机的属性,通过继承接口来获取。

回到主题,Python语言可没有接口功能,但是它可以多重继承。那Python是不是就该用多重继承来实现呢?是,也不是。说是,因为从语法上看,的确是通过多重继承实现的。说不是,因为它的继承依然遵守”is-a”关系,从含义上看依然遵循单继承的原则。这个怎么理解呢?我们还是看例子吧。
class Vehicle(object):
pass

class PlaneMixin(object):
def fly(self):
print 'I am flying'

class Airplane(Vehicle, PlaneMixin):
pass

可以看到,上面的Airplane类实现了多继承,不过它继承的第二个类我们起名为PlaneMixin,而不是Plane,这个并不影响功能,但是会告诉后来读代码的人,这个类是一个Mixin类。所以从含义上理解,Airplane只是一个Vehicle,不是一个Plane。这个Mixin,表示混入(mix-in),它告诉别人,这个类是作为功能添加到子类中,而不是作为父类,它的作用同Java中的接口。

使用Mixin类实现多重继承要非常小心
首先它必须表示某一种功能,而不是某个物品,如同Java中的Runnable,Callable等
 
其次它必须责任单一,如果有多个功能,那就写多个Mixin类然后,它不依赖于子类的实现最后,子类即便没有继承这个Mixin类,也照样可以工作,就是缺少了某个功能。(比如飞机照样可以载客,就是不能飞了^_^) 查看全部
A mixin is a limited form of multiple inheritance.
 
maxin类似多重继承的一种限制形式:
 关于Python的Mixin模式

像C或C++这类语言都支持多重继承,一个子类可以有多个父类,这样的设计常被人诟病。因为继承应该是个”is-a”关系。比如轿车类继承交通工具类,因为轿车是一个(“is-a”)交通工具。一个物品不可能是多种不同的东西,因此就不应该存在多重继承。不过有没有这种情况,一个类的确是需要继承多个类呢?

答案是有,我们还是拿交通工具来举例子,民航飞机是一种交通工具,对于土豪们来说直升机也是一种交通工具。对于这两种交通工具,它们都有一个功能是飞行,但是轿车没有。所以,我们不可能将飞行功能写在交通工具这个父类中。但是如果民航飞机和直升机都各自写自己的飞行方法,又违背了代码尽可能重用的原则(如果以后飞行工具越来越多,那会出现许多重复代码)。怎么办,那就只好让这两种飞机同时继承交通工具以及飞行器两个父类,这样就出现了多重继承。这时又违背了继承必须是”is-a”关系。这个难题该怎么破?

不同的语言给出了不同的方法,让我们先来看下Java。Java提供了接口interface功能,来实现多重继承:
public abstract class Vehicle {
}

public interface Flyable {
public void fly();
}

public class FlyableImpl implements Flyable {
public void fly() {
System.out.println("I am flying");
}
}

public class Airplane extends Vehicle implements Flyable {
private flyable;

public Airplane() {
flyable = new FlyableImpl();
}

public void fly() {
flyable.fly();
}
}


现在我们的飞机同时具有了交通工具及飞行器两种属性,而且我们不需要重写飞行器中的飞行方法,同时我们没有破坏单一继承的原则。飞机就是一种交通工具,可飞行的能力是是飞机的属性,通过继承接口来获取。

回到主题,Python语言可没有接口功能,但是它可以多重继承。那Python是不是就该用多重继承来实现呢?是,也不是。说是,因为从语法上看,的确是通过多重继承实现的。说不是,因为它的继承依然遵守”is-a”关系,从含义上看依然遵循单继承的原则。这个怎么理解呢?我们还是看例子吧。
class Vehicle(object):
pass

class PlaneMixin(object):
def fly(self):
print 'I am flying'

class Airplane(Vehicle, PlaneMixin):
pass


可以看到,上面的Airplane类实现了多继承,不过它继承的第二个类我们起名为PlaneMixin,而不是Plane,这个并不影响功能,但是会告诉后来读代码的人,这个类是一个Mixin类。所以从含义上理解,Airplane只是一个Vehicle,不是一个Plane。这个Mixin,表示混入(mix-in),它告诉别人,这个类是作为功能添加到子类中,而不是作为父类,它的作用同Java中的接口。

使用Mixin类实现多重继承要非常小心
  • 首先它必须表示某一种功能,而不是某个物品,如同Java中的Runnable,Callable等

 
  • 其次它必须责任单一,如果有多个功能,那就写多个Mixin类
  • 然后,它不依赖于子类的实现
  • 最后,子类即便没有继承这个Mixin类,也照样可以工作,就是缺少了某个功能。(比如飞机照样可以载客,就是不能飞了^_^)

python不支持多重继承中的重复继承

python李魔佛 发表了文章 • 0 个评论 • 146 次浏览 • 2019-04-18 16:36 • 来自相关话题

代码如下:
class First(object):
def __init__(self):
print("first")

class Second(First):
def __init__(self):
print("second")

class Third(First,Second):
def __init__(self):
print("third")
运行代码会直接报错:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-6-c90f7b77d3e0> in <module>()
7 print("second")
8
----> 9 class Third(First,Second):
10 def __init__(self):
11 print("third")

TypeError: Cannot create a consistent method resolution order (MRO) for bases First, Second
  查看全部
代码如下:
class First(object):
def __init__(self):
print("first")

class Second(First):
def __init__(self):
print("second")

class Third(First,Second):
def __init__(self):
print("third")

运行代码会直接报错:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-6-c90f7b77d3e0> in <module>()
7 print("second")
8
----> 9 class Third(First,Second):
10 def __init__(self):
11 print("third")

TypeError: Cannot create a consistent method resolution order (MRO) for bases First, Second

 

datetime转为date,pandas的日期类型转为python的datime

python李魔佛 发表了文章 • 0 个评论 • 291 次浏览 • 2019-04-08 15:40 • 来自相关话题

dataframe的数据格式是这样子的:





 
info看一下里面的数据类型:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307 entries, 0 to 306
Data columns (total 7 columns):
日期 307 non-null datetime64[ns]
指数 307 non-null float64
成交额(亿元) 307 non-null float64
涨跌 307 non-null float64
涨跌额 307 non-null float64
转债数目 307 non-null float64
剩余规模 307 non-null float64
dtypes: datetime64[ns](1), float64(6)
memory usage: 16.9 KB
日期 307 non-null datetime64[ns]
 
然后转为list看看:
a=list(df['日期'].values)
如果使用上面的方法,返回的是这样的数据:
[numpy.datetime64('2017-12-29T00:00:00.000000000'),
numpy.datetime64('2018-01-02T00:00:00.000000000'),
numpy.datetime64('2018-01-03T00:00:00.000000000'),
numpy.datetime64('2018-01-04T00:00:00.000000000'),
numpy.datetime64('2018-01-05T00:00:00.000000000'),
numpy.datetime64('2018-01-08T00:00:00.000000000'),
numpy.datetime64('2018-01-09T00:00:00.000000000'),
numpy.datetime64('2018-01-10T00:00:00.000000000'),
numpy.datetime64('2018-01-11T00:00:00.000000000'),
numpy.datetime64('2018-01-12T00:00:00.000000000'),
numpy.datetime64('2018-01-15T00:00:00.000000000'),
numpy.datetime64('2018-01-16T00:00:00.000000000'),
numpy.datetime64('2018-01-17T00:00:00.000000000'),
 
如何转化为python的daetime格式呢?
 
可以使用内置的:s.dt.to_pydatetime()
s为df的一列,也就是series数据格式
 
b=list(df['日期'].dt.to_pydatetime())得到的是
[datetime.datetime(2017, 12, 29, 0, 0),
datetime.datetime(2018, 1, 2, 0, 0),
datetime.datetime(2018, 1, 3, 0, 0),
datetime.datetime(2018, 1, 4, 0, 0),
datetime.datetime(2018, 1, 5, 0, 0),
datetime.datetime(2018, 1, 8, 0, 0),
datetime.datetime(2018, 1, 9, 0, 0),
datetime.datetime(2018, 1, 10, 0, 0),
datetime.datetime(2018, 1, 11, 0, 0),
datetime.datetime(2018, 1, 12, 0, 0),
datetime.datetime(2018, 1, 15, 0, 0)
为了不想要小时,分钟,秒的数据,可以清洗一下:
b=[i.strftime('%Y-%m-%d') for i in b]
 
得到:
['2017-12-29',
'2018-01-02',
'2018-01-03',
'2018-01-04',
'2018-01-05',
'2018-01-08',
'2018-01-09',
'2018-01-10',
'2018-01-11',
'2018-01-12',
'2018-01-15',
'2018-01-16',
'2018-01-17', 
  查看全部
dataframe的数据格式是这样子的:

d1.PNG

 
info看一下里面的数据类型:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307 entries, 0 to 306
Data columns (total 7 columns):
日期 307 non-null datetime64[ns]
指数 307 non-null float64
成交额(亿元) 307 non-null float64
涨跌 307 non-null float64
涨跌额 307 non-null float64
转债数目 307 non-null float64
剩余规模 307 non-null float64
dtypes: datetime64[ns](1), float64(6)
memory usage: 16.9 KB

日期 307 non-null datetime64[ns]
 
然后转为list看看:
a=list(df['日期'].values)
如果使用上面的方法,返回的是这样的数据:
[numpy.datetime64('2017-12-29T00:00:00.000000000'),
numpy.datetime64('2018-01-02T00:00:00.000000000'),
numpy.datetime64('2018-01-03T00:00:00.000000000'),
numpy.datetime64('2018-01-04T00:00:00.000000000'),
numpy.datetime64('2018-01-05T00:00:00.000000000'),
numpy.datetime64('2018-01-08T00:00:00.000000000'),
numpy.datetime64('2018-01-09T00:00:00.000000000'),
numpy.datetime64('2018-01-10T00:00:00.000000000'),
numpy.datetime64('2018-01-11T00:00:00.000000000'),
numpy.datetime64('2018-01-12T00:00:00.000000000'),
numpy.datetime64('2018-01-15T00:00:00.000000000'),
numpy.datetime64('2018-01-16T00:00:00.000000000'),
numpy.datetime64('2018-01-17T00:00:00.000000000'),

 
如何转化为python的daetime格式呢?
 
可以使用内置的:s.dt.to_pydatetime()
s为df的一列,也就是series数据格式
 
b=list(df['日期'].dt.to_pydatetime())
得到的是
[datetime.datetime(2017, 12, 29, 0, 0),
datetime.datetime(2018, 1, 2, 0, 0),
datetime.datetime(2018, 1, 3, 0, 0),
datetime.datetime(2018, 1, 4, 0, 0),
datetime.datetime(2018, 1, 5, 0, 0),
datetime.datetime(2018, 1, 8, 0, 0),
datetime.datetime(2018, 1, 9, 0, 0),
datetime.datetime(2018, 1, 10, 0, 0),
datetime.datetime(2018, 1, 11, 0, 0),
datetime.datetime(2018, 1, 12, 0, 0),
datetime.datetime(2018, 1, 15, 0, 0)

为了不想要小时,分钟,秒的数据,可以清洗一下:
b=[i.strftime('%Y-%m-%d') for i in b]
 
得到:
['2017-12-29',
'2018-01-02',
'2018-01-03',
'2018-01-04',
'2018-01-05',
'2018-01-08',
'2018-01-09',
'2018-01-10',
'2018-01-11',
'2018-01-12',
'2018-01-15',
'2018-01-16',
'2018-01-17',
 
 

python datetime模块:timestamp转为本地时间(东八区)

python李魔佛 发表了文章 • 0 个评论 • 199 次浏览 • 2019-04-04 15:15 • 来自相关话题

一般timestamp时间戳格式为10位,如果是13位,则需要除以1000,

1554369904000
为例,计算这个数字的本地时间。
 
如果使用
t=1554369904000
datetime.datetime.fromtimestamp(t/1000)
 
得到的是:
(2019, 4, 4, 17, 25, 4)
 
然而这个时间并不是我想要的,和我想要的时间差了8个时区。
 
那么可以使用
datetime.datetime.utcfromtimestamp(t/1000)
这个返回的就是我想要的时间了
(2019, 4, 4, 9, 25, 4)
 
 
引用:
timestamp转换为datetime
要把timestamp转换为datetime,使用datetime提供的fromtimestamp()方法:

>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00
注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。

本地时间是指当前操作系统设定的时区。例如北京时区是东8区,则本地时间:

2015-04-19 12:20:00
实际上就是UTC+8:00时区的时间:

2015-04-19 12:20:00 UTC+8:00
而此刻的格林威治标准时间与北京时间差了8小时,也就是UTC+0:00时区的时间应该是:

2015-04-19 04:20:00 UTC+0:00
timestamp也可以直接被转换到UTC标准时区的时间:

>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00
 
  查看全部
一般timestamp时间戳格式为10位,如果是13位,则需要除以1000,

1554369904000
为例,计算这个数字的本地时间。
 
如果使用
t=1554369904000
datetime.datetime.fromtimestamp(t/1000)
 
得到的是:
(2019, 4, 4, 17, 25, 4)
 
然而这个时间并不是我想要的,和我想要的时间差了8个时区。
 
那么可以使用
datetime.datetime.utcfromtimestamp(t/1000)
这个返回的就是我想要的时间了
(2019, 4, 4, 9, 25, 4)
 
 
引用:
timestamp转换为datetime
要把timestamp转换为datetime,使用datetime提供的fromtimestamp()方法:

>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00
注意到timestamp是一个浮点数,它没有时区的概念,而datetime是有时区的。上述转换是在timestamp和本地时间做转换。

本地时间是指当前操作系统设定的时区。例如北京时区是东8区,则本地时间:

2015-04-19 12:20:00
实际上就是UTC+8:00时区的时间:

2015-04-19 12:20:00 UTC+8:00
而此刻的格林威治标准时间与北京时间差了8小时,也就是UTC+0:00时区的时间应该是:

2015-04-19 04:20:00 UTC+0:00
timestamp也可以直接被转换到UTC标准时区的时间:

>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t)) # 本地时间
2015-04-19 12:20:00
>>> print(datetime.utcfromtimestamp(t)) # UTC时间
2015-04-19 04:20:00

 
 

【Dataframe warning】Try using .loc[row_indexer,col_indexer] = value instead

python李魔佛 发表了文章 • 0 个评论 • 164 次浏览 • 2019-04-02 22:48 • 来自相关话题

使用dataframe直接赋值操作时
 
df['当前日期'] = datetime.date.today()
 
会出现下面的警告信息
Try using .loc[row_indexer,col_indexer] = value instead 
 
虽然得到的最终结果是正常的,可是为什么会出现上面的警告呢?
 
因为上面的操作如果稍微复杂点,那么就可能导致赋值失败。 因为中间会产生一个切片的临时副本。
 
比如:
df
A B C D E
0 5 0 3 3 7
1 9 3 5 2 4
2 7 6 8 8 1
如果想把A列中大于5的数换成100,如何操作 ?
 
A B C D E
0 5 0 3 3 7
1 1000 3 5 2 4
2 1000 6 8 8 1

df[df.A > 5]['A'] = 1000
 
上面的这个表达式是不会生效的。
 
要生效,需要写成以下:
df.loc[df.A > 5, 'A'] = 1000
 
为什么呢?
因为df[df.A]得到是一个临时切片结果,等于一个中间变量,然后在这个中间变量上的A列上做赋值操作,但是最原始的df却没有被改变。
或者你可以这样写
df=df[df.A>5]
df.A=1000
 
 
  查看全部
使用dataframe直接赋值操作时
 
df['当前日期'] = datetime.date.today()
 
会出现下面的警告信息
Try using .loc[row_indexer,col_indexer] = value instead 
 
虽然得到的最终结果是正常的,可是为什么会出现上面的警告呢?
 
因为上面的操作如果稍微复杂点,那么就可能导致赋值失败。 因为中间会产生一个切片的临时副本。
 
比如:
df
A B C D E
0 5 0 3 3 7
1 9 3 5 2 4
2 7 6 8 8 1

如果想把A列中大于5的数换成100,如何操作 ?
 
      A  B  C  D  E
0 5 0 3 3 7
1 1000 3 5 2 4
2 1000 6 8 8 1


df[df.A > 5]['A'] = 1000
 
上面的这个表达式是不会生效的。
 
要生效,需要写成以下:
df.loc[df.A > 5, 'A'] = 1000
 
为什么呢?
因为df[df.A]得到是一个临时切片结果,等于一个中间变量,然后在这个中间变量上的A列上做赋值操作,但是最原始的df却没有被改变。
或者你可以这样写
df=df[df.A>5]
df.A=1000
 
 
 

python析构函数的执行顺序

python李魔佛 发表了文章 • 0 个评论 • 156 次浏览 • 2019-04-01 21:28 • 来自相关话题

在python里面,由于有自动回收内存的机制,所以析构函数的用处要比C++弱得多。 
 
下面看代码:
 
class Foobar(object):

def __init__(self):
print('class start')

def __del__(self):
print('class end')

def main()
obj = Foobar()
print('where is del?')
print('main end')

main()
上面的代码输出结果是什么呢? 卖个关子,自己执行看看吧。 查看全部
在python里面,由于有自动回收内存的机制,所以析构函数的用处要比C++弱得多。 
 
下面看代码:
 
class Foobar(object):

def __init__(self):
print('class start')

def __del__(self):
print('class end')

def main()
obj = Foobar()
print('where is del?')
print('main end')

main()

上面的代码输出结果是什么呢? 卖个关子,自己执行看看吧。

【手把手教你】量价关系分析与Python实现

量化交易Python金融量化 发表了文章 • 3 个评论 • 346 次浏览 • 2019-04-01 17:15 • 来自相关话题

如果操作过量,即使对市场判断正确,仍会一败涂地。——索罗斯

引言

成交量是股票市场的温度计,许多股票的疯狂上涨并非基本面发生了实质性的变化,而是短期筹码和资金供求关系造成的。量价关系分析法是一种将价格走势与成交量变化相结合的研究方法,正所谓,大军未动,粮草先行。成交量一直被看为是股票市场的“粮草”,成交量的变化是股价变化的前兆。因此,成交量是分析判断市场行情,并作出投资决策时的重要依据,也是各种技术分析指标应用时不可或缺的参照。

本文延续“手把手教你使用Python的TA-Lib”系列,着重介绍交易量指标(Volume Indicators)及其运用。【手把手教你】股市技术分析利器之TA-Lib(一)主要探讨了重叠指标的相关原理与Python实现,【手把手教你】股市技术分析利器之TA-Lib(二)则着重介绍了TA-Lib中强大的数学运算、数学变换、统计函数、价格变换、周期指标和波动率指标函数及其应用实例。TA-Lib的安装使用可查看以前推文。

                        


01
A/D Line 累积派发线


Chaikin Accumulation/Distribution Line (AD),是Marc Chaikin提出的用来平衡交易量的指标,以当日收盘价、最高价和最低价来估算一段时间内该股票累积的资金流量, 用来确定潜在的趋势以及预测趋势反转。


函数名:AD

调用格式:ta.AD(high,low,close,volume)

计算方法: AD=前日AD值+(多空对比*成交量)

多空对比=((收盘价-最低价)-(最高价-收盘价))/(最高价-最低价);注意:当最高价等于最低价时,多空对比 = (收盘价 / 昨收盘) - 1

运用要点:

AD测量资金流向,AD向上表明多方占优势,反之表明空方占优势;

AD与价格的背离可视为买卖信号:底背离考虑买入,顶背离考虑卖出;

AD指标无需设置参数,但在应用时,可结合均线、MACD、KDJ等指标进行分析;

AD指标忽略了缺口的影响,有时无法真实反映价格与成交量的关系。


02
A/D Oscillator 震荡指标


震荡指标是计算长短周期的AD差,将资金流动情况与价格行为相对比,用来研判市场中资金流入和流出的情况。


函数名:ADOSC

调用格式:ta. ADOSC(high,low,close,volume,

              fastperiod=3,slowperiod=10)

计算方法:fastperiod AD - slowperiod AD,AD的计算同上。

运用要点:

交易信号是背离:看涨背离做多,看跌背离做空;

股价与90天移动平均结合,与其他指标结合;

由正变负卖出,由负变正买进。

03
OBV - 能量潮


全称为 On Balance Volume, 由 Joe Granville 提出,通过统计成交量变动的趋势推测股价趋势。


函数名:OBV

调用格式:ta.OBV(close, volume)

计算公式:以某日为基期,逐日累计每日股票总成交量,若隔日指数或股票上涨,则基期OBV加上本日成交量为本日OBV。隔日指数或股票下跌, 则基期OBV减去本日成交量为本日OBV。

研判:

以“N”字型为波动单位,一浪高于一浪称“上升潮”,下跌称“跌潮”;

上升潮买进,跌潮卖出;

须配合K线图、股价走势和其他指标。


04
应用实例代码


#先引入后面可能用到的包(package)
import pandas as pd  
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline   

#正常显示画图时出现的中文和负号
from pylab import mpl
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False


#引入TA-Lib库
import talib as ta


#获取交易数据函数,这里使用tushare的老接口,比较方便
import tushare as ts
def get_data(code,start='2018-11-01',end='2019-03-26'):
    df=ts.get_k_data(code,start,end)
    df.index=pd.to_datetime(df.date)
    df=df.sort_index()
    return df[['open','close','high','low','volume']]


#获取当前交易是所有股票代码和名字
basics=ts.get_stock_basics()
print(len(basics))
#basics.head()


3602


index={'上证综指': 'sh','深证成指': 'sz','沪深300': 'hs300',
               '创业板指': 'cyb', '上证50': 'sz50','中小板指': 'zxb'}


#将当前交易的股票和常用指数代码和名称写入字典,方便调用
stock=dict(zip(basics.name,basics.index))
stocks=dict(stock,**index)



计算交易量指标并可视化

#使用matplotlib画k线图以及
import matplotlib.patches as patches
def plot_line(name):   
    code=stocks[name]
    data=get_data(code)
    fig = plt.figure(figsize=(12,5))
    ax1 = fig.add_axes([0, 1, 1, 1])               
    ax1.set_title(name+"K线图与交易量指标",  fontsize=15)
    ax1.set_xlim(-1, len(data)+1)

    for i in range(len(data)):
        close_price,open_price = data.iloc[i, 1], data.iloc[i, 0]
        high_price, low_price = data.iloc[i,2], data.iloc[i, 3]
        trade_date = data.index[i]
        if close_price > open_price:#画阳线
            ax1.add_patch(patches.Rectangle((i-0.2, open_price), 0.4, close_price-open_price, fill=False, color='r'))
            ax1.plot([i, i], [low_price, open_price], 'r')
            ax1.plot([i, i], [close_price, high_price], 'r')
        else:#画阴线
            ax1.add_patch(patches.Rectangle((i-0.2, open_price), 0.4, close_price-open_price, color='g'))
            ax1.plot([i, i], [low_price, high_price], color='g')
    ax1.set_title("Price", fontsize=15, loc='left', color='r')
    #设置x轴标签
    ax1.set_xticks(range(0,len(data),5))#位置
    ax1.set_xticklabels([(data.index[i]).strftime('%Y-%m-%d') for i in ax1.get_xticks()] , rotation=20)
    high, low, close, volume = np.array(data['high']),np.array(data['low']),np.array(data['close']),np.array(data['volume'])
    #计算AD线
    AD = ta.AD(high, low, close, volume)       
    #计算ADOSC线
    ADOSC = ta.ADOSC(high,low, close, volume, fastperiod=3, slowperiod=10)      
    #计算OBC线
    OBV = ta.OBV(close, volume)                                                        

    ax2 = ax1.twinx() 
    ax2.plot(AD, color='r', linewidth=2, label='AD')
    ax2.plot(ADOSC, color='b', linewidth=2, label='ADOSC')
    ax2.plot(OBV, color='y', linewidth=2, label='OBV')
    ax2.legend(loc=0)
plot_line('东方通信')plot_line('上证综指')plot_line('创业板指')plot_line('中国平安')最后,在万矿上使用AD线进行了历史回测,作为演示例子,这里只对东方通信和中国平安股票进行了回测,期间为2018年1月1日至2019年3月25日。从AD线单一指标回测来看,在市场反弹或形成向上趋势时跑赢市场,但是最大回撤也比较大,如东方通信达到43.2%,当然这与回测期间和标的选择有很大的关系。这里只是作为演示例子,深入研究还得待结合其他指标。


东方通信AD线回测结果:


中国平安AD线回测结果:

结语

价量分析系统属于技术分析,而技术分析是股票分析的温度计。温度计无法预测未来的准确温度,更不可能决定温度。因此,技术分析只是告诉你发生了什么,但不能预测未来会发生什么。不要过于依赖技术指标提供的信号,市场总是充满突发性的事件,交易者情绪波动较大,因此股价并不是总是沿着规律运行。在使用量价关系时,不仅要分析量价关系中量的变化对价的影响,还应该分析量变化的原因,更应该知道这些变化之后交易者的情绪或行为,只有这样才能真正体会量价关系的精髓,提高自己预判的准确率。 查看全部
如果操作过量,即使对市场判断正确,仍会一败涂地。——索罗斯

引言

成交量是股票市场的温度计,许多股票的疯狂上涨并非基本面发生了实质性的变化,而是短期筹码和资金供求关系造成的。量价关系分析法是一种将价格走势与成交量变化相结合的研究方法,正所谓,大军未动,粮草先行。成交量一直被看为是股票市场的“粮草”,成交量的变化是股价变化的前兆。因此,成交量是分析判断市场行情,并作出投资决策时的重要依据,也是各种技术分析指标应用时不可或缺的参照。

本文延续“手把手教你使用Python的TA-Lib”系列,着重介绍交易量指标(Volume Indicators)及其运用。【手把手教你】股市技术分析利器之TA-Lib(一)主要探讨了重叠指标的相关原理与Python实现,【手把手教你】股市技术分析利器之TA-Lib(二)则着重介绍了TA-Lib中强大的数学运算、数学变换、统计函数、价格变换、周期指标和波动率指标函数及其应用实例。TA-Lib的安装使用可查看以前推文。

                        


01
A/D Line 累积派发线


Chaikin Accumulation/Distribution Line (AD),是Marc Chaikin提出的用来平衡交易量的指标,以当日收盘价、最高价和最低价来估算一段时间内该股票累积的资金流量, 用来确定潜在的趋势以及预测趋势反转。


函数名:AD

调用格式:ta.AD(high,low,close,volume)

计算方法: AD=前日AD值+(多空对比*成交量)

多空对比=((收盘价-最低价)-(最高价-收盘价))/(最高价-最低价);注意:当最高价等于最低价时,多空对比 = (收盘价 / 昨收盘) - 1

运用要点:

AD测量资金流向,AD向上表明多方占优势,反之表明空方占优势;

AD与价格的背离可视为买卖信号:底背离考虑买入,顶背离考虑卖出;

AD指标无需设置参数,但在应用时,可结合均线、MACD、KDJ等指标进行分析;

AD指标忽略了缺口的影响,有时无法真实反映价格与成交量的关系。


02
A/D Oscillator 震荡指标


震荡指标是计算长短周期的AD差,将资金流动情况与价格行为相对比,用来研判市场中资金流入和流出的情况。


函数名:ADOSC

调用格式:ta. ADOSC(high,low,close,volume,

              fastperiod=3,slowperiod=10)

计算方法:fastperiod AD - slowperiod AD,AD的计算同上。

运用要点:

交易信号是背离:看涨背离做多,看跌背离做空;

股价与90天移动平均结合,与其他指标结合;

由正变负卖出,由负变正买进。

03
OBV - 能量潮


全称为 On Balance Volume, 由 Joe Granville 提出,通过统计成交量变动的趋势推测股价趋势。


函数名:OBV

调用格式:ta.OBV(close, volume)

计算公式:以某日为基期,逐日累计每日股票总成交量,若隔日指数或股票上涨,则基期OBV加上本日成交量为本日OBV。隔日指数或股票下跌, 则基期OBV减去本日成交量为本日OBV。

研判:

以“N”字型为波动单位,一浪高于一浪称“上升潮”,下跌称“跌潮”;

上升潮买进,跌潮卖出;

须配合K线图、股价走势和其他指标。


04
应用实例代码


#先引入后面可能用到的包(package)
import pandas as pd  
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline   

#正常显示画图时出现的中文和负号
from pylab import mpl
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False


#引入TA-Lib库
import talib as ta


#获取交易数据函数,这里使用tushare的老接口,比较方便
import tushare as ts
def get_data(code,start='2018-11-01',end='2019-03-26'):
    df=ts.get_k_data(code,start,end)
    df.index=pd.to_datetime(df.date)
    df=df.sort_index()
    return df[['open','close','high','low','volume']]


#获取当前交易是所有股票代码和名字
basics=ts.get_stock_basics()
print(len(basics))
#basics.head()


3602


index={'上证综指': 'sh','深证成指': 'sz','沪深300': 'hs300',
               '创业板指': 'cyb', '上证50': 'sz50','中小板指': 'zxb'}


#将当前交易的股票和常用指数代码和名称写入字典,方便调用
stock=dict(zip(basics.name,basics.index))
stocks=dict(stock,**index)



计算交易量指标并可视化

#使用matplotlib画k线图以及
import matplotlib.patches as patches
def plot_line(name):   
    code=stocks[name]
    data=get_data(code)
    fig = plt.figure(figsize=(12,5))
    ax1 = fig.add_axes([0, 1, 1, 1])               
    ax1.set_title(name+"K线图与交易量指标",  fontsize=15)
    ax1.set_xlim(-1, len(data)+1)

    for i in range(len(data)):
        close_price,open_price = data.iloc[i, 1], data.iloc[i, 0]
        high_price, low_price = data.iloc[i,2], data.iloc[i, 3]
        trade_date = data.index[i]
        if close_price > open_price:#画阳线
            ax1.add_patch(patches.Rectangle((i-0.2, open_price), 0.4, close_price-open_price, fill=False, color='r'))
            ax1.plot([i, i], [low_price, open_price], 'r')
            ax1.plot([i, i], [close_price, high_price], 'r')
        else:#画阴线
            ax1.add_patch(patches.Rectangle((i-0.2, open_price), 0.4, close_price-open_price, color='g'))
            ax1.plot([i, i], [low_price, high_price], color='g')
    ax1.set_title("Price", fontsize=15, loc='left', color='r')
    #设置x轴标签
    ax1.set_xticks(range(0,len(data),5))#位置
    ax1.set_xticklabels([(data.index[i]).strftime('%Y-%m-%d') for i in ax1.get_xticks()] , rotation=20)
    high, low, close, volume = np.array(data['high']),np.array(data['low']),np.array(data['close']),np.array(data['volume'])
    #计算AD线
    AD = ta.AD(high, low, close, volume)       
    #计算ADOSC线
    ADOSC = ta.ADOSC(high,low, close, volume, fastperiod=3, slowperiod=10)      
    #计算OBC线
    OBV = ta.OBV(close, volume)                                                        

    ax2 = ax1.twinx() 
    ax2.plot(AD, color='r', linewidth=2, label='AD')
    ax2.plot(ADOSC, color='b', linewidth=2, label='ADOSC')
    ax2.plot(OBV, color='y', linewidth=2, label='OBV')
    ax2.legend(loc=0)
plot_line('东方通信')plot_line('上证综指')plot_line('创业板指')plot_line('中国平安')最后,在万矿上使用AD线进行了历史回测,作为演示例子,这里只对东方通信和中国平安股票进行了回测,期间为2018年1月1日至2019年3月25日。从AD线单一指标回测来看,在市场反弹或形成向上趋势时跑赢市场,但是最大回撤也比较大,如东方通信达到43.2%,当然这与回测期间和标的选择有很大的关系。这里只是作为演示例子,深入研究还得待结合其他指标。


东方通信AD线回测结果:


中国平安AD线回测结果:

结语

价量分析系统属于技术分析,而技术分析是股票分析的温度计。温度计无法预测未来的准确温度,更不可能决定温度。因此,技术分析只是告诉你发生了什么,但不能预测未来会发生什么。不要过于依赖技术指标提供的信号,市场总是充满突发性的事件,交易者情绪波动较大,因此股价并不是总是沿着规律运行。在使用量价关系时,不仅要分析量价关系中量的变化对价的影响,还应该分析量变化的原因,更应该知道这些变化之后交易者的情绪或行为,只有这样才能真正体会量价关系的精髓,提高自己预判的准确率。

学习强国Python自动化代码

python爬虫李魔佛 发表了文章 • 0 个评论 • 4619 次浏览 • 2019-03-27 17:45 • 来自相关话题

话不多说,爱国爱党爱人民!!! 本代码转载至github其他人,与本人无关。
 
# _*_ coding: utf-8 _*_

from selenium import webdriver
import time

__author__ = 'Silent_Coder'
__date__ = '2019/3/12 22:41'

HOME_PAGE = 'https://www.xuexi.cn/'
VIDEO_LINK = 'https://www.xuexi.cn/a191dbc3067d516c3e2e17e2e08953d6/b87d700beee2c44826a9202c75d18c85.html?pageNumber=39'
LONG_VIDEO_LINK = 'https://www.xuexi.cn/f65dae4a57fe21fcc36f3506d660891c/b2e5aa79be613aed1f01d261c4a2ae17.html'
LONG_VIDEO_LINK2 = 'https://www.xuexi.cn/0040db2a403b0b9303a68b9ae5a4cca0/b2e5aa79be613aed1f01d261c4a2ae17.html'
TEST_VIDEO_LINK = 'https://www.xuexi.cn/8e35a343fca20ee32c79d67e35dfca90/7f9f27c65e84e71e1b7189b7132b4710.html'
SCORES_LINK = 'https://pc.xuexi.cn/points/my-points.html'
LOGIN_LINK = 'https://pc.xuexi.cn/points/login.html'
ARTICLES_LINK = 'https://www.xuexi.cn/d05cad69216e688d304bb91ef3aac4c6/9a3668c13f6e303932b5e0e100fc248b.html'

options = webdriver.ChromeOptions()
options.add_experimental_option('excludeSwitches', ['enable-automation'])
browser = webdriver.Chrome(executable_path=r'D:\OneDrive\Python\selenium\chromedriver.exe',options=options)


def login_simulation():
"""模拟登录"""
# 方式一:使用cookies方式
# 先自己登录,然后复制token值覆盖
# cookies = {'name': 'token', 'value': ''}
# browser.add_cookie(cookies)

# 方式二:自己扫码登录
browser.get(LOGIN_LINK)
browser.maximize_window()
browser.execute_script("var q=document.documentElement.scrollTop=1000")
time.sleep(10)
browser.get(HOME_PAGE)
print("模拟登录完毕\n")


def watch_videos():
"""观看视频"""
browser.get(VIDEO_LINK)
videos = browser.find_elements_by_xpath("//div[@id='Ck3ln2wlyg3k00']")
spend_time = 0

for i, video in enumerate(videos):
if i > 6:
break
video.click()
all_handles = browser.window_handles
browser.switch_to_window(all_handles[-1])
browser.get(browser.current_url)

# 点击播放
browser.find_element_by_xpath("//div[@class='outter']").click()
# 获取视频时长
video_duration_str = browser.find_element_by_xpath("//span[@class='duration']").get_attribute('innerText')
video_duration = int(video_duration_str.split(':')[0]) * 60 + int(video_duration_str.split(':')[1])
# 保持学习,直到视频结束
time.sleep(video_duration + 3)
spend_time += video_duration + 3
browser.close()
browser.switch_to_window(all_handles[0])

# if spend_time < 3010:
# browser.get(LONG_VIDEO_LINK)
# browser.execute_script("var q=document.documentElement.scrollTop=850")
# try:
# browser.find_element_by_xpath("//div[@class='outter']").click()
# except:
# pass
#
# # 观看剩下的时间
# time.sleep(3010 - spend_time)
browser.get(TEST_VIDEO_LINK)
time.sleep(3010 - spend_time)
print("播放视频完毕\n")


def read_articles():
"""阅读文章"""
browser.get(ARTICLES_LINK)
articles = browser.find_elements_by_xpath("//div[@id='Ca4gvo4bwg7400']")
for index, article in enumerate(articles):
if index > 7:
break
article.click()
all_handles = browser.window_handles
browser.switch_to_window(all_handles[-1])
browser.get(browser.current_url)
for i in range(0, 2000, 100):

js_code = "var q=document.documentElement.scrollTop=" + str(i)
browser.execute_script(js_code)
time.sleep(5)
for i in range(2000, 0, -100):
js_code = "var q=document.documentElement.scrollTop=" + str(i)
browser.execute_script(js_code)
time.sleep(5)
time.sleep(80)
browser.close()
browser.switch_to_window(all_handles[0])
print("阅读文章完毕\n")


def get_scores():
"""获取当前积分"""
browser.get(SCORES_LINK)
time.sleep(2)
gross_score = browser.find_element_by_xpath("//*[@id='app']/div/div[2]/div/div[2]/div[2]/span[1]")\
.get_attribute('innerText')
today_score = browser.find_element_by_xpath("//span[@class='my-points-points']").get_attribute('innerText')
print("当前总积分:" + str(gross_score))
print("今日积分:" + str(today_score))
print("获取积分完毕,即将退出\n")


if __name__ == '__main__':
login_simulation() # 模拟登录
read_articles() # 阅读文章
watch_videos() # 观看视频
get_scores() # 获得今日积分
browser.quit() 查看全部
话不多说,爱国爱党爱人民!!! 本代码转载至github其他人,与本人无关。
 
# _*_ coding: utf-8 _*_

from selenium import webdriver
import time

__author__ = 'Silent_Coder'
__date__ = '2019/3/12 22:41'

HOME_PAGE = 'https://www.xuexi.cn/'
VIDEO_LINK = 'https://www.xuexi.cn/a191dbc3067d516c3e2e17e2e08953d6/b87d700beee2c44826a9202c75d18c85.html?pageNumber=39'
LONG_VIDEO_LINK = 'https://www.xuexi.cn/f65dae4a57fe21fcc36f3506d660891c/b2e5aa79be613aed1f01d261c4a2ae17.html'
LONG_VIDEO_LINK2 = 'https://www.xuexi.cn/0040db2a403b0b9303a68b9ae5a4cca0/b2e5aa79be613aed1f01d261c4a2ae17.html'
TEST_VIDEO_LINK = 'https://www.xuexi.cn/8e35a343fca20ee32c79d67e35dfca90/7f9f27c65e84e71e1b7189b7132b4710.html'
SCORES_LINK = 'https://pc.xuexi.cn/points/my-points.html'
LOGIN_LINK = 'https://pc.xuexi.cn/points/login.html'
ARTICLES_LINK = 'https://www.xuexi.cn/d05cad69216e688d304bb91ef3aac4c6/9a3668c13f6e303932b5e0e100fc248b.html'

options = webdriver.ChromeOptions()
options.add_experimental_option('excludeSwitches', ['enable-automation'])
browser = webdriver.Chrome(executable_path=r'D:\OneDrive\Python\selenium\chromedriver.exe',options=options)


def login_simulation():
"""模拟登录"""
# 方式一:使用cookies方式
# 先自己登录,然后复制token值覆盖
# cookies = {'name': 'token', 'value': ''}
# browser.add_cookie(cookies)

# 方式二:自己扫码登录
browser.get(LOGIN_LINK)
browser.maximize_window()
browser.execute_script("var q=document.documentElement.scrollTop=1000")
time.sleep(10)
browser.get(HOME_PAGE)
print("模拟登录完毕\n")


def watch_videos():
"""观看视频"""
browser.get(VIDEO_LINK)
videos = browser.find_elements_by_xpath("//div[@id='Ck3ln2wlyg3k00']")
spend_time = 0

for i, video in enumerate(videos):
if i > 6:
break
video.click()
all_handles = browser.window_handles
browser.switch_to_window(all_handles[-1])
browser.get(browser.current_url)

# 点击播放
browser.find_element_by_xpath("//div[@class='outter']").click()
# 获取视频时长
video_duration_str = browser.find_element_by_xpath("//span[@class='duration']").get_attribute('innerText')
video_duration = int(video_duration_str.split(':')[0]) * 60 + int(video_duration_str.split(':')[1])
# 保持学习,直到视频结束
time.sleep(video_duration + 3)
spend_time += video_duration + 3
browser.close()
browser.switch_to_window(all_handles[0])

# if spend_time < 3010:
# browser.get(LONG_VIDEO_LINK)
# browser.execute_script("var q=document.documentElement.scrollTop=850")
# try:
# browser.find_element_by_xpath("//div[@class='outter']").click()
# except:
# pass
#
# # 观看剩下的时间
# time.sleep(3010 - spend_time)
browser.get(TEST_VIDEO_LINK)
time.sleep(3010 - spend_time)
print("播放视频完毕\n")


def read_articles():
"""阅读文章"""
browser.get(ARTICLES_LINK)
articles = browser.find_elements_by_xpath("//div[@id='Ca4gvo4bwg7400']")
for index, article in enumerate(articles):
if index > 7:
break
article.click()
all_handles = browser.window_handles
browser.switch_to_window(all_handles[-1])
browser.get(browser.current_url)
for i in range(0, 2000, 100):

js_code = "var q=document.documentElement.scrollTop=" + str(i)
browser.execute_script(js_code)
time.sleep(5)
for i in range(2000, 0, -100):
js_code = "var q=document.documentElement.scrollTop=" + str(i)
browser.execute_script(js_code)
time.sleep(5)
time.sleep(80)
browser.close()
browser.switch_to_window(all_handles[0])
print("阅读文章完毕\n")


def get_scores():
"""获取当前积分"""
browser.get(SCORES_LINK)
time.sleep(2)
gross_score = browser.find_element_by_xpath("//*[@id='app']/div/div[2]/div/div[2]/div[2]/span[1]")\
.get_attribute('innerText')
today_score = browser.find_element_by_xpath("//span[@class='my-points-points']").get_attribute('innerText')
print("当前总积分:" + str(gross_score))
print("今日积分:" + str(today_score))
print("获取积分完毕,即将退出\n")


if __name__ == '__main__':
login_simulation() # 模拟登录
read_articles() # 阅读文章
watch_videos() # 观看视频
get_scores() # 获得今日积分
browser.quit()